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We study synchronization in disordered arrays of Josephson junctions. In the first half of the paper, we
consider the relation between the coupled resistively and capacitively shunted junctionsRCSJd equations for
such arrays and effective phase models of the Winfree type. We describe a multiple-time-scale analysis of the
RCSJ equations for a ladder array of junctionswith non-negligible capacitancein which we arrive at a second
order phase model that captures well the synchronization physics of the RCSJ equations for that geometry. In
the second half of the paper, motivated by recent work on small-world networks, we study the effect on
synchronization of random, long-range connections between pairs of junctions. We consider the effects of such
shortcuts on ladder arrays, finding that the shortcuts make it easier for the array of junctions in the nonzero
voltage state to synchronize. In two-dimensionals2Dd arrays we find that the additional shortcut junctions are
only marginally effective at inducing synchronization of the active junctions. The differences in the effects of
shortcut junctions in 1D and 2D can be partly understood in terms of an effective phase model.
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I. INTRODUCTION

The synchronization of coupled nonlinear oscillators has
been a fertile area of research for decadesf1g. In particular,
phase models of the Winfree typef2g have been extensively
studied. In one dimension, a generic version of this model
for N oscillators is

du j

dt
= V j + o

k=1

N

s j ,kGsuk − u jd, s1d

whereu j is the phase of oscillatorj , which can be envisioned
as a point moving around the unit circle with angular veloc-
ity du j /dt. In the absence of coupling, this overdamped os-
cillator has an angular velocityV j. Gsuk−u jd is the coupling
function, ands j ,k describes the range and naturese.g., attrac-
tive or repulsived of the coupling. The special case
Gsuk−u jd=sinsuk−u jd, s j ,k=a /N sa=constd, corresponds to
the uniform, sinusoidal coupling of each oscillator to the
remainingN−1 oscillators. This mean-field system is usually
called the sglobally coupledd Kuramoto model sGKMd.
Kuramoto was the first to show that for this particular form
of coupling and in theN→` limit, there is a continuous
dynamical phase transition at a critical value of the coupling
strengthac and that fora.ac both phase and frequency
synchronization appear in the systemf3,4g. If s j ,k=ad j ,k±1
while the coupling function retains the formGsu j −ukd
=sinsuk−u jd we have the so-called locally coupled Kuramoto
modelsLKM d, in which each oscillator is coupled only to its
nearest neighbors. Studies of synchronization in the LKM
f5g, including extensions to more than one spatial dimension,

have shown thatac grows without bound in theN→` limit
f6g.

Several years ago, Watts and Strogatz introduced a simple
model for tuning collections of coupled dynamical systems
between the two extremes of random and regular networks
f7g. In this model, connections between nodes in a regular
array are randomly rewired with a probabilityp, such that
p=0 means the network is regularly connected, whilep=1
results in a random connection of nodes. For a range of in-
termediate values ofp between these two extremes, the net-
work retains a property of regular networkssa large cluster-
ing coefficientd and also acquires a property of random
networkssa short characteristic path length between nodesd.
Networks in this intermediate configuration are termed
“small-world” networks. Many examples of such small
worlds, both natural and human made, have been discussed
f8g. Not surprisingly, there has been much interest in the
synchronization of dynamical systems connected in a small-
world geometry f9–17g. Generically, such studies have
shown that the presence of small-world connections makes it
easier for a network to synchronize, an effect generally at-
tributed to the reduced path length between the linked sys-
tems. This has also been found to be true for the special case
in which the dynamics of each oscillator is described by a
Kuramoto modelf13,14g.

As an example of physically controllable systems of non-
linear oscillators which can be studied both theoretically and
experimentally, Josephson junctionsJJd arrays are almost
without peer. Through modern fabrication techniques and
careful experimental methods one can attain a high degree of
control over the dynamics of a JJ array, and many detailed
aspects of array behavior have been studiedf18g. Among the
many different geometries of JJ arrays,ladder arrays ssee
Fig. 1d deserve special attention. For example, they have*Electronic address: brtrees@owu.edu
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been observed to support stable time-dependent, spatially lo-
calized states known as discrete breathersf19g. In addition,
the ladder geometry is more complex than that of better un-
derstood serial arrays but less so than fully two-dimensional
s2Dd arrays. In fact, a ladder can be considered as a special
kind of 2D array, and so the study of ladders could throw
some light on the behavior of such 2D arrays. Also, linearly
stable synchronization of the horizontal, or rung, junctions in
a ladderssee Fig. 1d is observed in the absence of a load over
a wide range of dc bias currents and junction parameters
ssuch as junction capacitanced, so that synchronization in this
geometry appears to be robustf20g.

In the mid 1990s it was shown that aserial array of zero-
capacitance, i.e., overdamped, junctions coupled to a load
could be mapped onto the GKMf21,22g. The load in this
case was essential in providing an all-to-all coupling among
the junctions. The result was based on an averaging process,
in which sat leastd two distinct time scales were identified:
the “short” time scale set by the rapid voltage oscillations of
the junctionssthe array was current biased above its critical
currentd and “long” time scale over which the junctions syn-
chronize their voltages. If the resistively shunted junction
sRSJd equations describing the dynamics of the junctions are
integrated over one cycle of the “short” time scale, what
remains is the “slow” dynamics, describing the synchroniza-
tion of the array. This mapping is useful because it allows
knowledge about the GKM to be applied to understanding
the dynamics of the serial JJ array. For example, the authors
of Ref. f21g were able, based on the GKM, to predict the
level of critical current disorder the array could tolerate be-
fore frequency synchronization would be lost. Frequency
synchronization, also described as entrainment, refers to the
state of the array in which all junctionsnot in the zero-

voltage state have equalsto within some numerical preci-
siond time-averaged voltages:s" /2edkdu j /dtlt, where u j is
the gauge-invariant phase difference across junctionj . More
recently, the “slow” synchronization dynamics of finite-
capacitance serial arrays of JJ’s has also been studied
f23,24g. Perhaps surprisingly, however, no experimental
work on JJ arrays has verified the accuracy of this GKM
mapping. Instead, the first detailed experimental verification
of Kuramoto’s theory was recently performed on systems of
coupled electrochemical oscillatorsf25g.

Recently, Danielset al. f26g, with an eye toward a better
understanding of synchronization in 2D JJ arrays, showed
that a ladder array ofoverdampedjunctions could be mapped
onto the locally coupled Kuramoto model. This work was
based on an averaging process, as in Ref.f21g, and was valid
in the limits of weak critical current disordersless than
about 10%d and large dc bias currentsIB along the rung
junctionssIB/ kIcl*3, wherekIcl is the arithmetic average of
the critical currents of the rung junctionsd. The result dem-
onstrated, for both open and periodic boundary conditions,
that synchronization of the current-biased rung junctions in
the ladder is well described by Eq.s1d.

The goal of the present work is twofold. First, we will
demonstrate that a ladder array ofunderdampedjunctions
can be mapped onto a second-order Winfree-type oscillator
model of the form

a
d2u j

dt2
+

du j

dt
= V j + o

k=1

N

s j ,kGsuk − u jd, s2d

wherea is a constant related to the average capacitance of
the rung junctions. This result is based on the resistively and
capacitively shunted junctionsRCSJd model and a multiple
time scale analysis of the classical equations for the array.
Second, we study the effects of small-worldsSWd connec-
tions on the synchronization of both overdamped and under-
damped ladder arrays. We will demonstrate that SW connec-
tions make it easier for the ladder to synchronize, and that a
Kuramoto or Winfree type modelfEqs.s1d ands2dg, suitably
generalized to include the new connections, accurately de-
scribes the synchronization of this ladder.

This article is organized as follows. In Secs. II and III we
discuss the multiple-time-scale technique for deriving the
coupled phase oscillator model for theunderdampedladder
withoutSW connections. We compare the synchronization of
this “averaged” model to the exact RCSJ behavior. We also
analyze how the array’s synchronization depends on the ca-
pacitance of the junctions. In Sec. IV, we study the effects of
SW connections, or shortcuts, on the synchronization of both
overdamped and underdamped ladders. In our scenario, each
SW connection is actually another Josephson junction. We
generalize our phase oscillator model to include the effects
of shortcuts and relate our results to earlier work on
Kuramoto-like models in the presence of shortcutsf13,14g.
In Sec. V we study the effects of SW connections on syn-
chronization in disordered 2D arrays. Here we find that the
disordered 2D array, which doesnot fully synchronize in the
pristine casesi.e., in the absence of shortcutsd, is only weakly
synchronized by the addition of shortcut junctions between

FIG. 1. Ladder array with periodic boundary conditions andN
=8 plaquettes. A uniform, dc bias currentIB is inserted into and
extracted from each rung as shown. The gauge-invariant phase dif-
ference across the rung junctions is denoted byg j where 1ø j øN,
while the corresponding quantities for the off-rung junctions along
the outersinnerd edge arec1,j sc2,jd. The rung junctions are as-
sumed to be disordered while the off-rung junctions are uniform.
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superconducting islands in the array. In Sec. VI we conclude
and discuss possible avenues for future work.

II. PHASE MODEL FOR UNDERDAMPED LADDER

A. Background

The ladder geometry is shown in Fig. 1, which depicts an
array with N=8 plaquettes, periodic boundary conditions,
and uniform dc bias currentsIB along the rung junctions. The
gauge-invariant phase difference across rung junctionj is g j,
while the phase difference across the off-rung junctions
along the outersinnerd edge of plaquettej is c1,j sc2,jd. The
critical current, resistance, and capacitance of rung junctionj
are denotedIcj, Rj, andCj, respectively. For simplicity, we
assume all off-rung junctions are identical, with critical cur-
rent Ico, resistanceRo, and capacitanceCo. We also assume
that the product of the junction critical current and resistance
is the same for all junctions in the arrayf27g, with a similar
assumption about the ratio of each junction’s critical current
with its capacitance:

IcjRj = IcoRo =
kIcl

kR−1l
, s3d

Icj

Cj
=

Ico

Co
=

kIcl
kCl

, s4d

where for any generic quantityX, the angular brackets with
no subscript denote an arithmetic average over the set of
rung junctions,kXl;s1/Ndo j=1

N Xj.
For convenience, we work with dimensionless quantities.

Our dimensionless time variable is

t ;
t

tc
=

2ekIclt
"kR−1l

, s5d

wheret is the ordinary time. The dimensionless bias current
is

iB ;
IB

kIcl
, s6d

while the dimensionless critical current of rung junctionj is
icj; Icj / kIcl. The McCumber parameter in this case is

bc ;
2ekIclkCl
"kR−1l2 . s7d

Note thatbc is proportional to the mean capacitance of the
rung junctions. An important dimensionless parameter is

a ;
Ico

kIcl
, s8d

which will effectively tune the nearest-neighbor interaction
strength in our phase model for the ladder.

Conservation of charge applied to the superconducting
islands on the outer and inner edge, respectively, of rung
junction j yields the following equations in dimensionless
variables:

iB − icj sing j − icj
dg j

dt
− icjbc

d2g j

dt2 − a sinc1,j − a
dc1,j

dt

− abc
d2c1,j

dt2 + a sinc1,j−1 + a
dc1,j−1

dt
+ abc

d2c1,j−1

dt2 = 0,

s9ad

− iB + icj sing j + icj
dg j

dt
+ icjbc

d2g j

dt2 − a sinc2,j − a
dc2,j

dt

− abc
d2c2,j

dt2 + a sinc2,j−1 + a
dc2,j−1

dt
+ abc

d2c2,j−1

dt2 = 0,

s9bd

where 1ø j øN. The result is a set of 2N equations in 3N
unknowns:g j, c1,j, andc2,j. We supplement Eq.s9d by the
constraint of fluxoid quantization in the absence of external
or induced magnetic flux. For plaquettej this constraint
yields the relationship

g j + c2,j − g j+1 − c1,j = 0. s10d

Equationss9d ands10d can be solved numerically for the 3N
phasesg j, c1,j, andc2,j f28g.

We assign the rung junction critical currents in one of two
ways, randomly or nonrandomly. We generate random criti-
cal currents according to a parabolic probability distribution
function sPDFd of the form

Psicd =
3

4D3fD2 − sic − 1d2g, s11d

where ic= Ic/ kIcl represents a scaled critical current, andD

determines the spread of the critical currents. Equations11d
results in critical currents in the range 1−Dø icø1+D. Note
that this choice for the PDFsalso used in Ref.f21gd avoids
extreme critical currentssrelative to a mean value of unityd
that are occasionally generated by PDF’s with tails. The non-
random method of assigning rung junction critical currents
was based on the expression

icj = 1 +D −
2D

sN − 1d2f4j2 − 4sN + 1d j + sN + 1d2g,

1 ø j ø N, s12d

which results in theicj values varying quadratically as a
function of position along the ladder and falling within the
range 1−Dø icjø1+D. We usually useD=0.05.

B. Multiple-time-scale analysis

Our goal in this subsection is to derive a Kuramoto-like
model for the phase differences across the rung junctions,g j,
starting with Eq.s9d. We begin with two reasonable assump-
tions. First, we assume there is a simple phase relationship
between the two off-rung junctions in the same plaquette:

c2,j = − c1,j , s13d

SYNCHRONIZATION IN DISORDERED JOSEPHSON… PHYSICAL REVIEW E 71, 016215s2005d

016215-3



the validity of which has been discussed in detail elsewhere
f26,29g. As a result, Eq.s10d reduces to

c1,j =
g j − g j+1

2
, s14d

which implies that Eq.s9ad can be written as

icjbc
d2g j

dt2 + icj
dg j

dt
+

abc

2
Fd2g j+1

dt2 − 2
d2g j

dt2 +
d2g j−1

dt2 G
+

a

2
Fdg j+1

dt
− 2

dg j

dt
+

dg j−1

dt
G

= iB − icj sing j + a o
d=±1

sinSg j+d − g j

2
D . s15d

Our second assumption is that we can neglect the discrete
Laplacian terms in Eq. s15d, namely, ¹2sdg j /dtd
;dg j+1/dt−2dg j /dt+dg j−1/dt and ¹2sd2g j /dt2d
;d2g j+1/dt2−2d2g j /dt2+d2g j−1/dt2. We find numerically,
over a wide range of bias currentsiB, McCumber parameters
bc, and coupling strengthsa that ¹2sdg j /dtd and
¹2sd2g j /dt2d oscillate with a time-averaged value of ap-
proximately zero. Since the multiple-time-scale method is
similar to averaging over a fast time scale, it seems reason-
able to drop these terms. In light of this assumption, Eq.s15d
becomes

icjbc
d2g j

dt2 + icj
dg j

dt
= iB − icj sing j + a o

d=±1
sinSg j+d − g j

2
D .

s16d

We can use Eq.s16d as the starting point for a multiple-
time-scale analysis. Following Refs.f23,24g, we divide Eq.
s16d by iB and define the following quantities:

t̃ ; iBt, s17ad

b̃c ; iBbc, s17bd

e = 1/iB. s17cd

In terms of these scaled quantities, Eq.s16d can be written as

1 = icjb̃c
d2g j

dt̃2 + icj
dg j

dt̃
+ eicj sing j − eao

d

sinSg j+d − g j

2
D .

s18d

Next, we introduce a series of foursdimensionlessd time
scales,

Tn ; ent̃, n = 0,1,2,3, s19d

which are assumed to be independent of each other. Note
that 0,e,1 sincee=1/iB. We can think of each succes-
sive time scaleTn as being “slower” than the scale before
it. For example,T2 describes a slower time scale thanT1.
The time derivatives in Eq.s18d can be written in terms of
the new time scales, since we can think oft̃ as being a
function of the four independentTn’s, t̃= t̃sT0,T1,T2,T3d.

Letting ]n;] /]Tn, the first and second time derivatives can
be written as

d

dt̃
= ]0 + e]1 + e2]2 + e3]3, s20d

d2

dt̃2 = ]0
2 + 2e]0]1 + e2s2]0]2 + ]1

2d + 2e3s]0]3 + ]1]2d,

s21d

where in Eq.s22d we have dropped terms of ordere4 and
higher.

Next, we expand the phase differences in ane expansion

g j = o
n=0

`

engn,jsT0,T1,T2,T3d. s22d

Substituting this expansion into Eq.s18d and collecting all
terms of ordere0 results in the expression

1 = icjb̃c]0
2g0,j + icj]0g0,j , s23d

for which we find the solution

g0,j =
T0

icj
+ f jsT1,T2,T3d, s24d

where we have ignored a transient term of the forme−T0/b̃c,
and wheref jsT1,T2,T3d is assumed constant over the fastest
time scaleT0. Note that the expression forg0,j consists of a
rapid phase rotation described byT0/ icj and slower-scale
temporal variations, described byf j, on top of that overturn-
ing. In essence, the goal of this technique is to solve for the
dynamical behavior of the slow phase variablef j. The re-
maining details of the calculation can be found in the Appen-
dix. We merely quote the resulting differential equation for
the f j here:

bc
d2f j

dt2 +
df j

dt
= V j + Kj o

d=±1
sinFf j+d − f j

2
G

+ Lj o
d=±1

sinF3Sf j+d − f j

2
DG

+ Mj o
d=±1

HcosFf j+d − f j

2
G

− cosF3Sf j+d − f j

2
DGJ , s25d

where V j is given by the expressionsletting xj ; icj / iB for
convenienced

V j =
1

xj
F1 −

xj
4

s2bc
2 + xj

2dG , s26d

and the three coupling strengths are
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Kj =
a

icj
F1 +

xj
4s3xj

2 + 23bc
2d

16sbc
2 + xj

2d2 G , s27d

Lj =
a

icj

xj
4s3bc

2 − xj
2d

16sbc
2 + xj

2d2 , s28d

Mj = −
a

icj

xj
5bc

4sbc
2 + xj

2d2 . s29d

We emphasize that Eq.s25d is expressed in terms of the
original, unscaled, time variablet and McCumber parameter
bc.

We will generally consider bias current and junction ca-
pacitance values such thatxj

2!bc
2. In this limit, Eqs.

s27d–s29d can be approximated as follows:

Kj →
a

icj
F1 + OS 1

iB
4DG , s30d

Lj →
a

icj
S 3xj

4

16bc
2D , OS 1

iB
4D , s31d

Mj → −
a

icj
S xj

5

4bc
3D , OS 1

iB
5D . s32d

For large bias currents, it is reasonable to truncate Eq.s25d at
Os1/iB

3d, which leaves

bc
d2f j

dt2 +
df j

dt
= V j +

a

icj
o

d=±1
sinFf j+d − f j

2
G , s33d

where all the cosine coupling terms and the third harmonic
sine term have been dropped as a result of the truncation.

In the absence of any coupling between neighboring rung
junctionssa=0d the solution to Eq.s33d is

f j
sa=0d = A + Be−t/bc + V jt,

whereA andB are arbitrary constants. Ignoring the transient
exponential term, we see thatdf j

sa=0d /dt=V j, so we can
think of V j as the voltage across rung junctionj in the un-
coupled limit. Alternatively,V j can be viewed as the angular
velocity of the strongly driven rotator in the uncoupled limit.

Equation s33d is our desired phase model for the rung
junctions of the underdamped ladder. The result can be de-
scribed as a locally coupled Kuramoto model with a second-
order time derivativesLKM2 d and with junction coupling
determined bya. In the context of systems of coupled rota-
tors, the second derivative term is due to the non-negligible
rotator inertia, whereas in the case of Josephson junctions the
second derivative arises because of the junction capacitance.
The globally coupledversion of the second-order Kuramoto
modelsGKM2d has been well studied; in this case the oscil-
lator inertia leads to a first-order synchronization phase tran-
sition as well as to hysteresis between a weakly and a
strongly coherent synchronized statef30,31g.

III. COMPARISON OF LKM2 AND RCSJ MODELS

We now compare the synchronization behavior of the
RCSJ ladder array with the LKM2. We consider frequency
and phase synchronization separately. For the rung junctions
of the ladder, frequency synchronization occurs when the
time-average voltageskv jlt=kdf j /dtlt are equal for allN
junctions, within some specified precision. In the language of
coupled rotators, this corresponds to phase points moving
around the unit circle with the same average angular velocity.
We quantify the degree of frequency synchronization via an
“order parameter”

f = 1 −
svsad
svs0d

, s34d

wheresvsad is the standard deviation of theN time-average
voltages,kv jlt:

svsad =Îo j=1

N fkv jlt − s1/Ndok=1

N
kvkltg2

N − 1
. s35d

In general, this standard deviation will be a function of the
coupling strengtha, so svs0d is a measure of the spread of
the kv jlt values forN independent junctions. Frequency syn-
chronization of allN junctions is signaled byf =1, while
f =0 means allN average voltages have their uncoupled val-
ues.

Figure 2 compares the order parameterf for an array with
N=10 plaquettes, a bias current ofiB=5, and nonrandomly
assigned critical currents withD=0.05 for both the RCSJ
model and the LKM2. For the RCSJ model, Eqs.s9d ands10d
were solved numerically using a fourth-order Runge-Kutta
algorithm with a time step ofDt=0.005 and a total of 5
3105 time steps. All time-average quantities were evaluated
using the second half of the time interval. For the LKM2, the
same numerical approach was applied to Eq.s33d.

Figure 2 shows some interesting behavior. First, in gen-
eral, the LKM2 agrees well with the RCSJ model, especially
in predicting a critical coupling strength,ac, at the onset of
full frequency synchronizationsf =1d. Second, asbc is in-
creased both models show evidence of a first-order transition
at ac fsee Fig. 2sddg at which f jumps abruptly to a value of
unity. In the vicinity of such an abrupt transition, the models
differ the most, but even in Fig. 2sdd, the RCSJ model and
the LKM2 agree on the value ofac. The deviation between
the models seen in Fig. 2sdd neara<0.4 could be due to a
region of bistability nearac that becomes more prominent
for increasingbc.

Figure 3 shows the case where the critical currents are
assigned randomly according to Eq.s11d with D=0.025 for
N=15, iB=5, andbc=20. The results for the frequency syn-
chronization order parameter were obtained by averaging
over ten different critical current realizations, and the error
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bars are the standard deviation of the mean value off for
each a. Note the excellent agreement between the RCSJ
model and the LKM2. Also note that averaging over critical
current realizations has a smoothing effect off compared to,
for example, Fig. 2sdd.

Phase synchronization of the rung junctions is measured
by the usual Kuramoto order parameter

r ;
1

N
o
j=1

N

eif j . s36d

The results shown in Fig. 4 represent the time-averaged
modulus ofr, kur ult, which approaches unity when the phase
differences across the junctions are identical. Figure 4 com-
pares the phase synchronization of the RCSJ model and the
LKM2 for the same geometry as in Fig. 2. The agreement
between the two models is excellent. Note the two types of
behavior observable in the plots. For small coupling
sa&0.7d, kur ult displays a complicated behavior due to finite-
size effects, while fora*0.7, kur ult exhibits a smooth rise
toward a value of unity with increasing coupling. In fact,
comparison of Figs. 2 and 4 shows that the value ofa sig-
naling the onset of the smooth increase in phase synchroni-
zation is approximately equal toac, the value at which full
frequency synchronization is obtained. Figure 4sdd also sug-

gests that the finite-size fluctuations for smalla are more
pronounced at largebc fcompare with Figs. 4sad, 4sbd, and
4scdg. Since the second-order Kuramoto model withglobal
coupling has discontinuities inkur ult as a function of coupling
strength for large arraysf30g, and since we have mapped the
RCSJ model to the LKM2, it would be interesting to look for
evidence of a first-order transition inkur ult for large arrays.
Such evidence is already visible, even for arrays as small as
N=10, in the frequency synchronization order parameterfsee
Fig. 2sddg.

We have also studied the synchronization in our two mod-
els as a function of the dc bias currentiB for fixed coupling
a, as shown in Fig. 5. Such a graph is useful because experi-
ments on periodic ladders would most likely be performed at
fixed a ssince that quantity is set by the fabrication of the
rung and off-rung junctionsd, while the bias current could be
easily varied. To obtainf experimentally, then, one needs to
measure the time-average voltages across the rung junctions
for each value of the bias current. Figure 5sad demonstrates
that as the bias current is increased for fixed coupling
strength, frequency synchronization is eventually lost. This is
reasonable physically; as a rotator is driven harder a stronger
coupling with its neighbors should be required to keep the
rotators entrained. Figure 5sbd plotssvsa , iBd versusiB, show-
ing that the spread in junction voltages scales linearly with
the bias current over a wide range of currents. The behavior
observed in both Figs. 5sad and 5sbd for bias currents ofiB
*10 is not surprising. When the system is far from fre-
quency synchronization, the time-averaged voltages should

FIG. 2. sColor onlined Frequency synchroni-
zation order parameterf, plotted versus nearest-
neighbor coupling strengtha for a ladder with
N=10 plaquettes and bias currentiB=5. Rung
junction critical currents are assigned nonran-
domly with D=0.05. bc=sad 1, sbd 5, scd 10,
and sdd 20. For each plot the phase differences
and voltages are reset to zero with each new
value ofa.
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be well approximated by their values in the absence of cou-
pling, namely,kv jlt<V j, whereV j is given by Eq.s26d. In
the limit sicj / iBd2!1, Eq.s26d givesV j < iB/ icj. In this case,
we can write

svsa,iBd < iBÎo j=1

N f1/icj − s1/Ndok=1

N
s1/ickdg2

N − 1
= CiB,

s37d

whereC is a constant independent of the bias current. Thus
the linear scaling ofsv with bias current is just due to the
scaling of the time-averaged voltages across the rung junc-
tions with iB. Equations37d is actually the standard deviation
in the limit a→0, so for bias currents large enough that the
junctions can be treated as approximately independent, we
expectsvsa , iBd /svs0,iBd→1, which in turn meansf →0, as
observed in Fig. 5sad.

Figure 6 shows that lima→0kv jlt=V j. To obtain this result,
kv jltsiBd across thej =1 rung junction was calculated numeri-
cally for the RCSJ model forbc=1 anda=0.01, which is
more than an order of magnitude smaller thanac. The results
are shown as solid circles. The dotted line represents the
analytic expressionkv1lt=V1, whereV1 is given by Eq.s26d
and which results from our multiple-time-scale analysis. The
solid line is the large-bias-current limit of Eq.s26d, namely,
V1< iB/ ic1. Note that the numerical results agree well with
Eq. s26d for a!ac over the entire range of bias currents
shown, and with the large-bias-current result foriB*2.5.

Of particular interest is how the array behaves near the
frequency synchronization transition,a<ac. As shown in
Fig. 7sad for an array withN=10 plaquettes driven by a bias

FIG. 3. sColor onlined Frequency synchronization order param-
eter f, plotted versus nearest-neighbor coupling strengtha for a
ladder withN=15 plaquettes, bias currentiB=5, andbc=20. Rung
junction critical currents are assigned randomly withD=0.025, and
results are averaged over ten realizations of critical currents. Error
bars represent the standard deviation of the mean value off and for
clarity only a few, representative error bars are shown. Numerical
solution of the RCSJ model are denoted by filled circles, and the
results from the LKM2 are denoted by crosses.

FIG. 4. sColor onlined Phase synchronization
order parameterkur ult, plotted versus nearest-
neighbor coupling strengtha for a ladder with
N=10 plaquettes,iB=5, and nonrandom critical
currents withD=0.05. bc=sad 1, sbd 5, scd 10,
and sdd 20. For each plot phase differences and
voltages across rung junctions are reset to zero
with each new value ofa.
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currentiB=5, the order parameter develops a discontinuity at
ac for bc*8. In addition, for sufficiently largebc the array
also exhibits hysteretic behavior inf, as shown in Fig. 8. The
behavior depicted in Figs. 7 and 8 is presumably due to
bistability of the individual junctionsf32g arising from their
non-negligible capacitance. Figure 7sbd shows that for in-
creasingbc the discontinuity in the order parameter atac,
Df, can be well fitted by an exponential rise that asymptoti-
cally saturates to a valueDfmax for bc→`, i.e.,

Df =HDfmaxf1 − e−bsbc−bc
* dg, bc ù bc

* ,

0, bc , bc
* .
J s38d

For bc,bc
* the frequency synchronization transition is a

smooth function ofa asa decreases throughac from above.
Thus, the junctions must be sufficiently underdamped for the
discontinuous nature of the transition to be manifest.fBut
Fig. 7sad gives at least the hint of a possible discontinuity in
Df for bc=8 arounda=0.37,ac.g The data in Fig. 7 were
obtained from a numerical solution of the RCSJ model, but
we see qualitatively similar behavior from a numerical solu-
tion of Eq. s33d, namely, saturation ofDf to a maximum
value that is well fitted by an exponential function.

Lastly in this section, we address the issue of the linear
stability of the frequency synchronized statessa.acd by
calculating their Floquet exponents numerically for the RCSJ
model as well as analytically based on the LKM2, Eq.s33d.
The analytic technique used has been described in detail
elsewheref33g, so we shall merely quote the result for the
real part of the Floquet exponents:

Reslmtcd = −
1

2bc

f1 ± ReÎ1 − 4bcsK̄ + 3L̄dvm
2 g , s39d

where stable solutions correspond to exponentslm with a
negative real part. One can think of thevm as the normal
mode frequencies of the ladder. We find that for a ladder with
periodic boundary conditions andN plaquettes

vm
2 =

4 sin2smp/Nd
1 + 2 sin2smp/Nd

, 0 ø mø N − 1. s40d

To arrive at Eq.s39d we have ignored the effects of disorder
so thatK̄ andL̄ are obtained from Eqs.s27d ands28d with the
substitutionicj→1 throughout. This should be reasonable for
the levels of disorder we have considereds5%d. Substituting

FIG. 5. sColor onlined sad Frequency synchronization order pa-
rameter f, plotted versus dc bias currentiB for fixed coupling
strengtha=0.25 for both the RCSJ model and the LKM2.N=10,
bc=5, and nonrandom critical currents withD=0.05. sbd Standard
deviation of time-averaged rung junction voltages versus bias cur-
rent for the same model parameters as insad. The difference be-
tween the two models evident at large bias currents is probably due
to phase slips in the off-rung junctions that violate Eq.s13d.

FIG. 6. Time-averaged voltage acrossj =1 rung junction, plotted
versus bias currentiB for N=10,a=0.01!ac, andbc=1. The solid
circles are the numerical result from the RCSJ model. They agree
well with the analytical result for the weak-coupling limit,kv1lt

=V1, where V1 is given by Eq.s26d, which is represented by a
dashed line in the graph. Deviations from the large bias current
result,kv1lt< iB/ ic1 ssolid lined, do not appear untiliB&2.5.
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the expressions forK̄ and L̄ into Eq. s39d results in

Reslmtcd

= −
1

2bc

F1 ± ReÎ1 − 2bcaH1 +
2bc

2

siB
2bc

2 + 1d2Jvm
2G .

s41d

We are most interested in the Floquet exponent of minimum
magnitude, Reslmintcd, which essentially gives the lifetime of
the longest-lived perturbations to the synchronized statessee
Fig. 9d.

If the quantity inside the square root in Eq.s41d is nega-
tive then Reslmtcd=−1/s2bcd. This is the value seen in
Fig. 9sad for bc.b̄c=1.56. Forbc,b̄c andm=1, the quan-
tity inside the square root is positive and Reslmintcd
=s−1/2bcdf1−1−2bcav12g, where we have used the fact
that the quantity inside the braces in Eq.s41d is essentially
unity for iB=5 andbc.1. Physically, the crossover-type
behavior evident in Fig. 9sad is due to the low-frequency
slong-wavelengthd, m=1, normal mode of the ladder
changing from underdamped to overdamped in character

as bc is decreased throughb̄c=1/s2av1
2d=1.56 for N=10

and a=1. Note from Fig. 9sad that the numerical results
for the exponents based on the RCSJ model, with 5%
disorder, agree quite well with Eq.s41d. Not surprisingly,

FIG. 7. sad sColor onlined Frequency synchronization order pa-
rameterf, plotted versus coupling strengtha for a ladder withN
=10, iB=5, and nonrandom critical currents withD=0.05. Results
based on the RCSJ model for ten differentbc values are shown. In
these simulations,a is initialized to a value greater thanac and then
gradually decreased. With each new value ofa the phase differ-
ences and voltages across the rung junctions are reset to zero. Note
the appearance of a discontinuity inf as bc is increased. There is
also some evidence of additional discontinuities inf for a,ac ssee,
for example, the data forbc=8,12d. sbd Discontinuity in the fre-
quency synchronization order parameterDf at a=ac for different
values ofbc. This graph is produced from the data forf versusa
seen insad. The discontinuity is well fitted by an exponential rise to
a maximum,Df =Dfmaxf1−exp−bsbc−bc

*dg, where we find param-
eter values of Dfmax=0.679±0.020, b=0.140±0.020, andbc

*

=7.750±0.294 for this array.

FIG. 8. Hysteresis in the frequency synchronization order pa-
rameter f, plotted as a function of the coupling strengtha for a
ladder withN=10, iB=5, bc=30, and nonrandom critical currents
with D=0.05. To produce these plots,a is initialized to a value
greater thanac and then gradually decreased until the system jumps
discontinuously to the unsynchronized state; the couplinga is then
increased until the system jumps back to the synchronized state.
The final values of the phase differences and voltages across the
junctions, as obtained from the previous value ofa, are used as the
initial values for each new value ofa. sad Results based on the
RCSJ model.sbd Results based on the LKM2. Note that the models
agree on the value ofac at which the jump occurs from the syn-
chronized to the unsynchronized state for decreasinga. The solid
lines are a guide to the eye.

SYNCHRONIZATION IN DISORDERED JOSEPHSON… PHYSICAL REVIEW E 71, 016215s2005d

016215-9



the RCSJ model with no critical current disorder agrees
very well with the analytic result since the disorder was
ignored in order to obtain Eq.s41d. Figure 9sbd shows how
the minimum-magnitude Floquet exponent varies with
coupling strengtha for fixed bc. Now there is a crossover
at a=ā=1/s2bcv1

2d=1.56 for bc=1. For a.ā, Eq. s41d
gives Reslmintcd
=−1/s2bcd, independent ofa. For a,ā, however, we see
that asa→ac from above, the stability of the synchro-
nized state decreases. In fact, one can show from Eq.s41d
that for
a.ac andbcav1

2!1, the stability decreases linearly with
a according to

Reslmintcd < −
av1

2

2
, a → ac

+,

independent ofbc. Such linear behavior is evident in Fig.
9sbd for small a.

IV. “SMALL-WORLD” CONNECTIONS
IN LADDER ARRAYS

Many properties of small-world networks have been stud-
ied in the last several years, including not only the effects of
network topology but also the dynamics of the node elements
comprising the networkf8,34g. Of particular interest has
been the ability of oscillators to synchronize when config-
ured in a small-world manner. Such synchronization studies
can be broadly sorted into several categories.s1d Work on
coupled lattice maps has demonstrated that synchronization
is made easier by the presence of random, long-range con-
nectionsf11,16g. s2d Much attention has been given to the
synchronization of continuous time dynamical systems, in-
cluding the first-order locally coupled Kuramoto model, in
the presence of small-world connectionsf9,13,14g. For ex-
ample, Hong and co-workersf13,14g have shown that the
LKM, which does not exhibit a true dynamical phase transi-
tion in the thermodynamic limitsN→`d in thepristinecase,
does exhibit such a phase synchronization transition for even
a small number of shortcuts. But the assertionf15g that any
small-world network can synchronize for a given coupling
strength and large enough number of nodes, even when the
pristine network would not synchronize under the same con-
ditions, is not fully acceptedf35g. s3d More general studies
of synchronization in small-world and scale-free networks
f12,17g have shown that the small-world topology does not
guarantee that a network can synchronize. In Ref.f12g it was
shown that one could calculate the average number of short-
cuts per node,ssync, required for a given dynamical system to
synchronize. This study found no clear relation between this
synchronization threshold and the onset of the small-world
region, i.e., the value ofs such that the average path length
between all pairs of nodes in the array is less than some
threshold value. Referencef17g studied arrays with a power-
law distribution of node connectivitiessscale-free networksd
and found that a broader distribution of connectivities makes
a networklesssynchronizable even though the average path
length is smaller. It was argued that this behavior was caused
by an increased number of connections on the hubs of the
scale-free network. Clearly it is dangerous to assume that
merely reducing the average path length between nodes of an
array will make such an array easier to synchronize.

How do Josephson junction arrays fit into the above dis-
cussion? Specifically, if we have a disordered array biased
such that some subset of the junctions are in the voltage
state, i.e., undergoing limit cycle oscillations, will the addi-
tion of random, long-range connections between junctions
aid the array in attaining frequency and/or phase synchroni-
zation? Our goal in this section of the paper is to address this
question by using the mapping discussed in Secs. II and III
between the RCSJ model for theunderdampedladder array
and the second-order, locally coupled Kuramoto model.
Based on the results of Ref.f26g, we also know that the RSJ
model for anoverdampedladder can be mapped onto a first-
order, locally coupled Kuramoto model. Because of this
mapping, the ladder array falls into categorys2d of the pre-
vious paragraph. In other words, we should expect the exis-
tence of shortcuts to drastically improve the ability of ladder
arrays to synchronize.

FIG. 9. sColor onlined Real part of the minimum-magnitude
Floquet exponent for an array withN=10 and iB=5. sad Depen-
dence of exponents onbc for fixed coupling strength,a=1. Sym-
bols are results of a numerical calculation based on the RCSJ model
with either no disordersopen squaresd or nonrandom critical cur-
rents andD=0.05ssolid circlesd. The solid line is an analytic result
fEq. s39dg from the LKM2. sbd Dependence of exponents on cou-
pling strengtha for fixed bc=1.
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We add connections between pairs of rung junctions that
will result in interactions that are longer than nearest neigh-
bor in range. We do so by adding two, nondisordered, off-
rung junctions for each such connection. For example, Fig.
10 shows a connection between rung junctionsj =1 and j
=4. This is generated by the addition of the two off-rung
junctions labeledc1;1,4 andc2:1,4, where the last two indices
in each set of subscripts denote the two rung junctions con-
nected. The new off-rung junctions are assumed to be iden-
tical to the original off-rung junctions in the array, with criti-
cal current Ico, resistanceRo, and capacitanceCo for the
underdamped case. Physically, we should expect that the new
connection will provide a sinusoidal phase coupling between
rung junctionsj =1 and j =4 with a strength tuned by the
parametera= Ico/ kIcl, wherekIcl is the arithmetic average of
the rung junction critical currents. We assign long-range con-
nections between pairs of rung junctions randomly with a
probability p distributed uniformly between zero and one,
and we do not allow multiple connections between the same
pair of junctions. For the pristine ladder, withp=0, each
rung has only nearest-neighbor connections, whilep=1 cor-
responds to a regular network of globally coupled rung junc-
tions, i.e., each rung junction is coupled to every other rung
junction in the ladder.

In Fig. 11 we plot the two standard quantities used to
characterize the topology of the network: the average path
length l and the cluster coefficientC, calculated numerically
for a network withN=50 nodessi.e., rung junctionsd.The
average path lengthl is defined as the minimum distance
between each pair of nodes averaged over all such pairs,
while the cluster coefficientC is the average fraction of

nodes neighboring each node that are also neighbors them-
selves. These quantities are plotted as a function of the prod-
uct pN. For pN<1, the average path length is already sub-
stantially reduced from its value in the pristine limit,p=0. It
is this reduced average distance between pairs of nodes that
is one of the hallmarks of a small-world network. Because
our ladder array, in the pristine limit, allows only nearest-
neighbor coupling, the cluster coefficient vanishes asp→0.
As a result, our ladder geometry does not conform to the
most commonly accepted definition of a small world, in
which both reduced path lengthsscompared to the pristine
limit d and high cluster coefficientsscompared to that of a
random networkd coexistssee Fig. 2 in Ref.f7gd. Neverthe-
less, in our simulations we routinely choose values for the
parameterp such thatpN places us in the region of reduced
path lengths. So we are considering ladder arrays in which
the average distance between rung junctions is reduced by
shortcuts by a factor of 5–10.

Next, we argue that the RCSJ equations for the under-
damped junctions in the ladder array can be mapped onto a
straightforward variation of Eq.s33d, in which the sinusoidal
coupling term for rung junctionj also includes the longer-
range couplings due to the added shortcuts. Imagine a ladder
with a shortcut between junctionsj and l, wherel Þ j , j ±1.
Conservation of charge applied to the two superconducting
islands that comprise rung junctionj will lead to equations
very similar to Eq.s9d. For example, the analog to Eq.s9ad
will be

FIG. 10. A ladder array with periodic boundary conditions,N
=8 plaquettes, and one long-range connection. Rung junctionsj
=1 andj =4 are shown as connected by a pair of off-rung junctions,
which have phase differences ofc1:1,4 and c2;1,4. The additional
off-rung junctions are uniform and identical to the off-rung junc-
tions in the pristine ladder. Uniform dc bias currents are applied
along the rungs as in Fig. 1.

FIG. 11. Scaled average path lengthl /N ssolid circles and left
vertical axisd and cluster coefficientC shollow circles and right
vertical axisd, plotted versus the productpN, wherep is the prob-
ability of making a shortcut connection between pairs of nodes and
N is the total number of nodes in the network. This graph corre-
sponds toN=50. The solid line isC=2/N, which is the expected
cluster coefficient for a random network of sizeN=50 in which
each node has two neighbors in the pristine limit. Note thatC→0
as pN→0, since each node’s neighbors are not connected to each
other in that limit. Also note thatC→1 asp→1, which is the limit
of a fully connected, regular network in which each node’s neigh-
bors are all connected to one another.
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iB − icj sing j − icj
dg j

dt
− bcicj

d2g j

dt2 − a sinc1,j − a
dc1,j

dt

− bca
d2c1,j

dt2 + a sinc1,j−1 + a
dc1,j−1

dt
+ bca

d2c1,j−1

dt2

+ o
l
Fa sinc1;jl + a

dc1;jl

dt
+ bca

d2c1;jl

dt2 G = 0, s42d

with an analogous equation corresponding to the inner super-
conducting island that can be generalized from Eq.s9bd. The
sum over the indexl accounts for all junctions connected to
junction j via an added shortcut. Fluxoid quantization still
holds, which means that we can augment Eq.s10d with

g j + c2;jl − gl − c1;jl = 0. s43d

We also assume the analog of Eq.s13d holds:

c2;jl = − c1;jl . s44d

Equationss43d and s44d allow us to write the analog to Eq.
s14d for the case of shortcut junctions:

c1;jl =
g j − gl

2
. s45d

Equations42d, in light of Eq. s45d, can be written as

iB − icj sing j − icj
dg j

dt
− bcicj

d2g j

dt2 + a o
d=±1

sinSg j+d − g j

2
D

+ ao
l

sinSg j − gl

2
D +

a

2
¹2Sdg j

dt
D +

a

2
¹2Sd2g j

dt2 D
+

a

2o
l
Sdg j

dt
−

dgl

dt
D +

a

2o
l
Sd2g j

dt2 −
d2gl

dt2 D = 0, s46d

where the sumsol are over all rung junctions connected toj
via an added shortcut. As we did with the pristine ladder, we
will drop the two discrete Laplacians, since they have a very
small time average compared to the termsicjdg j /dt
+ icjbcd

2g j /dt2. The same is also true, however, of the terms
a /2olsdg j /dt−dgl /dtd and a /2olsd2g j /dt2−d2gl /dt2d, as
direct numerical solution of the full RCSJ equations in the
presence of shortcuts demonstratesssee Fig. 12d. So we shall
drop these terms as well. Then Eq.s46d becomes

iB − icj sing j − icj
dg j

dt
− bcicj

d2g j

dt2 +
a

2 o
kPL j

sinSgk − g j

2
D ,

s47d

where the sum is over all junctions inL j, which is the set of
all junctions connected to junctionj . Based on our work in
Sec. II, we can predict that a multiple-time-scale analysis of
Eq. s47d results in a phase model of the form

bc
d2f j

dt2 +
df j

dt
= V j +

a

2 o
kPL j

sinSfk − f j

2
D , s48d

where V j is give by Eq. s26d. A similar analysis for the
overdampedladder leads to the result

df j

dt
= V j

s1d +
a

2 o
kPL j

sinSfk − f j

2
D , s49d

where the time-averaged voltage across each overdamped
rung junction in the uncoupled limit is

FIG. 12. Time dependence of several combinations of voltages
or voltage derivatives for a ladder withN=10, iB=5, and nonran-
dom critical currents withD=0.05. The array was chosen to have
three shortcuts between the following pairs of rung junctions:s1,3d,
s2,7d, s4,6d. In both plots the following quantities are compared
snote that v1=dg1/dtd: ic1v1+ ic1bcdv1/dt sdot-dashed lined,
sa /2dsv1−v3d ssolid lined, and sa /2dbcsdv1/dt−dv3/dtd sdashed
lined. The time-average value of the latter two quantities is negli-
gible. sad a=1, bc=10. sbd a=1, bc=1.
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V j
s1d =ÎS iB

icj
D2

− 1. s50d

Figure 13 demonstrates that the frequency synchroniza-
tion order parameterf, calculated from Eq.s49d for over-
damped arrays withN=30 andN=50 and in the presence of
shortcuts, agrees well with the results of the RSJ model. In
addition to the pristine array withp=0, we considered arrays
with p=0.05 and 0.10 in which we averaged over ten real-
izations of shortcuts. The agreement between the two models
is excellent, as seen in the figure. It is also clear from the
figure that shortcuts do indeed help frequency synchroniza-
tion in that a smaller coupling strengtha is required to reach
f =1 in the presence of shortcuts. In fact, the value ofac
required to reachf =1 is growing with increasingN in the
cases ofp=0; for example, we find theac=3.36 for N
=100 scompare with Fig. 13d. The same is clearly not true,
however, for arrays withp=0.05 and 0.1. Recently, Hong,
Choi, and Kim f13g have demonstrated, using a finite-size
scaling analysis applied to the LKM, that the phase synchro-
nization order parameterkur ult in the presence of shortcuts
s0,p,1d has a mean-field synchronization phase transition
as in the GKM si.e., the LKM with p=1d. Based on the
agreement between the two models shown in Fig. 13, we
expect such an analysis to apply to the RSJ equations for the
ladder as well. The finite-size scaling behavior of thefre-
quencysynchronization of the LKM has not been studied, so
the nature of that transition is not well known. Figure 14
demonstrates thatunderdampedladders also synchronize
more easily with shortcuts and that Eq.s48d agrees well with
the RCSJ model.

Although the addition of shortcuts makes it easier for the
array to synchronize, we should also consider the effects of
such random connections on the stability of the synchronized
state. The Floquet exponents for the synchronized state allow
us to quantify this stability. Using a general technique dis-
cussed in Ref.f36g, we can calculate the Floquet exponents
lm for the LKM based on the expression

lmtc = aEm
G, s51d

whereEm
G are the eigenvalues ofG, the matrix of coupling

coefficients for the array. A specific elementGij of this ma-
trix is unity if there is a connection between rung junctionsi
and j . The diagonal termGii is merely the negative of the
number of junctions connected to junctioni. This gives the
matrix the propertyo jGij =0. In the case of the pristine lad-
der, the eigenvalues ofG can be calculated analytically,
which yields Floquet exponents of the form

lm
sp=0dtc = − 4a sin2Smp

N
D . s52d

This result is plotted in Fig. 15 as the solid line for an over-
damped array withN=100; note that the solid line is the
p=0 Floquet exponent of minimum, nonzero magnitude.
Since theEm

G are purely geometry dependent, i.e., do not

depend on the coupling strength, we expect the exponents to
grow linearly with a, based on Eq.s52d. To include the ef-
fects of shortcuts, we found the eigenvaluesEm

G numerically
for a particular realization of shortcutssfor a given value of
pd, and then we averaged over 100 realizations of shortcuts
for each value ofp. The exponents of minimum magnitude
for the overdamped array withp=0.01,0.05,0.10 are also
shown in Fig. 15snote the logarithmic scale on both axesd.
Clearly, shortcuts greatly improve the stability of the syn-
chronized state. Specificallylmin

sp=0.1d /lmin
sp=0d=1030, a three or-

der of magnitude enhancement.

FIG. 13. sColor onlined Frequency synchronization order param-
eter f, plotted versus coupling strengtha for overdampedarrays
with bias currentiB=5 and nonrandom critical currents withD
=0.05. Solid symbols represent numerical results based on the
LKM model, Eq. s49d, while hollow symbols are from the RSJ
model. The data for nonzerop represent an average over ten real-
izations of randomly assigned shortcuts.sad N=30, sbd N=50. Note
that shortcuts improve the frequency synchronization behavior in
that the critical coupling needed forf =1 is clearly reduced asp is
increased from zero. In factac is clearly growing with increasingN
in the case ofp=0, while the same is not true of the array with
shortcuts.
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V. “SMALL-WORLD” CONNECTIONS
IN TWO-DIMENSIONAL ARRAYS

In this section we present some preliminary results on
synchronization in disordered two-dimensional arrays in the
presence of shortcuts. Geometrically, we can think of a pris-
tine 2D array as a set ofM columns, or “ladders,” each with
N plaquettes, grafted togetherssee Fig. 16, which depicts
M =2, N=5d. It is well known that in such a geometry, phase
locking of all the horizontal junctions can occur in a hori-
zontally biased uniform arraysi.e., no critical current disor-
derd but that a high degree of neutral stability is exhibited
f37g. More precisely, in an array withM columns, there will
be a zero-valued Floquet exponent with multiplicityM. It

was shown in Ref.f38g thatunderdampedarrays in an exter-
nal magnetic field perpendicular to the plane of the array
could lift this degeneracy via the coupling of the junctions to
the external magnetic field in the gauge-invariant phase dif-
ference. In the presence of critical current disorder, however,
numerical simulations of the RSJ equations revealed that fre-
quency synchronization was no longer possible. In fact, each
column or ladder in the array would individually synchronize
but sufficient “interladder” coupling was not present to en-
train the entire set of horizontal junctionsf39,40g. This be-
havior is shown in Fig. 17 by means of a so-called cluster
diagram.

To include shortcut connections in the 2D array, we
followed a procedure similar to that described in the pre-
vious section. For clarity, let each horizontal junction in
the array be described by a pair of coordinatesi , j , wherei
denotes the row andj the column in which the junction is
positioned. To establish a connection between two particular
horizontal junctions, say junctionsi , j and k, l, that are not
already nearest neighbors, we add two new junctions, one
connecting the left superconducting island of junctioni , j
to the left island of junctionk, l and the second junction
between the islands on the right sides ofi , j and k, l. We
also allow the shortcut junctions to be critical current dis-
ordered. Contrary to the case of individual ladder arrays,
the effects of shortcuts on synchronization in 2D arrays is
not so easily characterized. Figure 18 shows the scaled
standard deviation of the time-averaged voltagessvsad /svs0d
for the ten horizontal junctions of an overdamped array with
M =2 and N=5 and for p=0.25. Note that the ratio does
not approach unity for nonzerop as a→0 because of the
presence of the disordered shortcut junctions. For reference,
svsad /svs0d for the pristine array is also shownssolid
circlesd. In this case, entrainment is frustrated in that the
ratio settles into a clearly nonzero value as the coupling
strength is increased. The hollow circles and squares in Fig.
18 are the values ofsvsad /svs0d for two different realizations
of shortcuts atp=0.25. For case 2 in the figureshollow
squaresd, the shortcuts have only slightly improved the level
of synchronization compared to the pristine case, as
svsad /svs0d is only reduced by a factor of about 0.35 com-
pared to itsp=0 value. Case 1shollow circlesd is more in-
teresting in thatsvsad /svs0d is reduced, on average, by an
order of magnitude compared to the pristine case by the par-
ticular realization of shortcut junctions present.fNote the
logarithmic scale on the vertical axis and the topmost arrow
on the right axis, which denotes the average value of
svsad /svs0d for 4,a,10.g The noise evident in the results
for case 1 is probably a finite-size effect, but studies of larger
arrays are necessary to be sure.

Although array synchronization has clearly not occurred
in the second realization of shortcuts in Fig. 18, the reduced
value ofsvsad /svs0d for case 1 does not automatically imply
entrainment has occurred in that case. Included in Fig. 18 are
the values ofsvsad /svs0d for the junctions in each column
separatelyshollow trianglesd. The low average value of these
quantitiesssee the two lower arrows along the right axisd
shows that the junctions in a given column are much more
strongly entrained to each other than to junctions in the

FIG. 14. sColor onlined Frequency synchronization order
parameterf, plotted versus coupling strengtha for anunderdamped
ladder array with N=30, bias currentiB=5, and nonrandom
critical currents withD=0.05. Solid symbols represent numerical
results based on the LKM2 model, Eq.s48d, while hollow symbols
are from the RCSJ model. The data for nonzerop represent an
average over ten realizations of randomly assigned shortcuts.sad
bc=1, sbd bc=30. Agreement between the two models is excellent,
except for largebc andp=0 nearac, which is not unexpected based
on Fig. 2.
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neighboring column. Thus, the hollow circles in Fig. 18 cor-
respond, at best, toweak intercolumn synchronization. Fig-
ures 19sad and 19sbd are cluster diagrams for cases 1 and 2,
respectively, in which the vertical axes of the two plots have
the same scale. Simple visual inspection of the plots suggest
that the array is weakly frequency synchronized in case 1 for
a*2 but not in case 2. In fact, we have considered ten
different realizations of shortcuts atp=0.25 and find this
weak synchronization behavior only for one realizationsi.e.,
case 1d. The nine remaining realizations resulted in an array
that was clearly not entrained, as in case 2. Based on these

results, we thus conclude that shortcuts in 2D arrays, biased
in the standard way shown in Fig. 16, do not significantly
enhance the array’s ability to synchronize. We see similar
effects forp=0.5.

We have also considered the effects ofuniform shortcuts
in the 2D array, where each additional shortcut junction is
identical to the uniform vertical junctions in the pristine ar-
ray. As in the case of disordered shortcuts, when we consider
ten different realizations atp=0.25 we find that in some
casessroughly 40% of the realizationsd the array weakly fre-
quency synchronizes and in the remaining cases it clearly
does not. Results representative of these two outcomes are
shown in Fig. 20. They show an interesting distinction be-
tween this case and the case of disordered shortcuts dis-
cussed previously: for sufficiently large couplinga, all aver-
age voltages across the horizontal junctions now go to zero.
This behavior is due to the fact thata= Ico/ kIcl is the ratio of
the critical current of the vertical junctions,now including
shortcut junctions, to the average critical current of the hori-
zontal junctions. As this ratio increases, for a given number
and configuration of shortcuts, a value ofa is eventually
reached for which all the bias current is able to traverse the
circuit without exceeding any particular junction’s critical
current. In other words, the array is biased below its effective
critical current in the presence of shortcuts and thus there is
a zero average voltage across the array.

FIG. 15. Floquet exponent of minimum magnitudelmin, plotted
versus coupling strengtha for the LKM with N=100. Exponents
are calculated based on a technique described in Ref.f36g. For p
=0, the exponents can be calculated analytically, with the result
Reslmintcd=−4a sin2sp /Nd. For each nonzerop, the results are av-
eraged over 100 realizations of shortcuts. Note the logarithmic scale
on both axes.

FIG. 16. A two-dimensional array of junctions withM =2 col-
umns, or “ladders,” each withN=5 plaquettes. A dc bias currentIB

is injected along the left side and extracted along the ride side of the
array. We assume periodic boundary conditions in they direction. A
junction with a label such as 1, 2 means the junction is in row 1 and
column 2.

FIG. 17. A cluster diagram of the time-averaged voltageskvi j lt

across the horizontal junctions, plotted versus coupling strengtha
for an array withM =2 columns andN=5 plaquettes per column. A
bias currentiB=5 is applied and extracted along each row, and the
horizontal junctions are assigned critical currents randomly accord-
ing to Eq.s11d with D=0.05. We assume periodic boundary condi-
tions in the vertical direction. The array is pristinesp=0d. The sym-
bols with dots correspond to voltages across the junctions in column
2. The diagram demonstrates that the two columns are each fre-
quency synchronized but that the synchronized voltages for each
column are different. The numbers in the legend denote the coordi-
nates of each horizontal junction. For example, the coordinates 1, 2
denote the horizontal junction in the first rowsstarting from the
bottom rowd and second columnsstarting from the left columnd.
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The limiting case ofp=1 means that each horizontal
junction is connected to all the remaining horizontal junc-
tions. For this case and with uniform shortcut junctions, we
find that the array behaves similarly to Fig. 20sad: there is a
range of coupling strengthsa for which there is weak en-
trainment, but for largea the array is in the zero-voltage
statessee Fig. 21d.

VI. CONCLUSIONS

In this paper we have obtained two main sets of results.
First, using a multiple-time-scale method, we have mapped
the exact RCSJ equations for an underdamped ladder with
periodic boundary conditions to a second-order, locally
coupled Kuramoto model. Second, we have studied the ef-
fects of small-world connections on the ability of both ladder
and 2D arrays to synchronize. The mapping to the LKM2 is
itself useful for two main reasons. First, the synchronization
behavior of the Kuramoto model and its variations has been
well studied in its own right and could thus shed some light
on behavior of actual JJ arrays. Second, the LKM2 is solved
more quickly on the computer and is easier to understand
intuitively than the RCSJ equations. Future work in this area
could include using the results of this mapping for the un-
derdamped laddersas well as the first-order LKM for the
overdamped ladderd to arrive at a phase model for the 2D
array, as has been suggested in Ref.f41g. Such a phase model
for 2D arrays may shed light on why it is difficult for 2D
arrays to synchronize.

We have also shown that small-world connections en-
hance a ladder array’s ability to synchronize. This result is
not surprising in light of our mapping to the LKM and earlier
studies in which the LKM was found to exhibit a mean-field-
like phase synchronization transition in the presence of
shortcutsf13g. But we find that SW connections only mar-
ginally increase the ability of a 2D array to synchronize.
Specifically, for several representative 2D small-world net-
works, we found only some small fraction of these networks
had slightly improved frequency synchronization of the hori-
zontal junctions. In the pristine 2D arraysp=0d it is well
known that no such synchronization, weak or otherwise, is
observed over the entire array—hence our characterization
that shortcuts are only marginally effective at producing a

FIG. 18. sColor onlined Scaled standard deviationsvsad /svs0d of
time-averaged voltages across the horizontal junctions, plotted ver-
sus coupling strengtha for an array withM =2 columns andN=5
plaquettes per column. The bias current isiB=5, and the horizontal
junctions are assigned critical currents randomly according to Eq.
s11d with D=0.05. We assume periodic boundary conditions in the
vertical direction. The solid circles are for the pristine array,p=0.
The hollow circles and squares represent two different realizations
of shortcuts atp=0.25 in which the added shortcut junctions are
critical current disordered. The hollow upsdownd triangles denote
the value ofsvsad /svs0d for only the junctions in column onestwod.
The arrows pointing to the right axis denote the average values of
svsad /svs0d over the interval 4,a,10 for the hollow circles and
both the up and down triangles.

FIG. 19. Cluster diagrams for the time-averaged voltageskvi j lt

across the horizontal junctions, plotted versus coupling strength
a for an array withM =2 columns andN=5 plaquettes per column.
The bias current isiB=5, applied and extracted along each row,
and the horizontal junctions are assigned critical currents ran-
domly according to Eq.s11d with D=0.05. We assume periodic
boundary conditions in the vertical direction. The legend provides
the coordinates for each horizontal junction as in Fig. 17.sad p
=0.25, first shortcut realization.sbd p=0.25, second shortcut
realization.
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synchronized array. This conclusion holds whether the addi-
tional shortcut junctions are disordered or uniform. Future
work in this area could include looking at a broader range of
p values as well as looking at larger 2D arrays. It is tempting,
but an oversimplification, to think of 2D arrays as mere as-
semblages of ladder arrays. One source of this temptation is
the intriguing fact that the pristine 2D array of disordered
junctions will form synchronized clusters consisting of indi-
vidual ladders. Another is our result that shortcuts can aug-

ment synchronization in individual ladders but not in 2D
arrays. If one can produce a mapping, even approximate, of
the RCSJ equations for the 2D array to a phase model of the
Winfree type, this could be very helpful in understanding the
rich and perplexing dynamical behavior of 2D arrays.
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APPENDIX: MULTIPLE TIME SCALE ANALYSIS

We substitute Eq.s22d into Eq. s18d. To help organize the
terms according to the order ine, we also write the nonlinear
terms as followssas in Ref.f24gd:

sing j = o
n=0

`

enSn,j , sA1ad

sinSg j+d − g j

2
D = o

n=0

`

enRn,j+d, sA1bd

where S0,j =sing0,j, S1,j =g1,j cosg0,j, S2,j =g2,j cosg0,j

− 1
2g1,j

2 sing0,j, R0,j+d=sinfsg0,j+d−g0,jd /2g, R1,j+d= 1
2 cos

3fsg0,j+d−g0,jd /2gsg1,j+d−g1,jd, and R2,j+d= 1
2 cosfsg0,j+d

−g0,jd /2gsg2,j+d−g2,jd− 1
8 sinfsg0,j+d−g0,jd /2gsg1,j+d−g1,jd2.

So Eq.s18d can then be written as

FIG. 20. Cluster diagrams for the time-averaged voltageskvi j lt

across the horizontal junctions, plotted versus coupling strengtha
for an array withM =2 andN=5. The bias current isiB=5, and the
horizontal junctions are assigned critical currents randomly accord-
ing to Eq.s11d with D=0.05. We assume periodic boundary condi-
tions in the vertical direction. All shortcut junctions are identical to
the uniform vertical junctions in the pristine array, i.e., the shortcut
junctions are not disordered. The legend provides the coordinates
for each horizontal junction as in Fig. 17.sad p=0.25, first shortcut
realization. For 2.2&a&3.6, the horizontal junctions are weakly
entrained, and fora*3.6 the array is in the zero-voltage state. The
inset showssvsad /svs0d versusa. The range ofa values between
the two vertical lines denotes the region of weak entrainment.sbd
p=0.25, second shortcut realization. There is no evidence of en-
trainment up toa<4.4, beyond which the array is in the zero-
voltage state.

FIG. 21. Cluster diagram for the time-averaged voltageskvi j lt

across the horizontal junctions, plotted versus coupling strengtha
for an array withM =2 andN=5. The bias current isiB=5, and the
horizontal junctions are assigned critical currents randomly accord-
ing to Eq.s11d with D=0.05. We assume periodic boundary condi-
tions in the vertical direction. All shortcut junctions are identical to
the uniform vertical junctions in the pristine array, i.e., the shortcut
junctions are not disordered. The legend provides the coordinates
for each horizontal junction as in Fig. 17. Shortcut junctions are
added according top=1.
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1 = icjb̃co
n=0

`

enf]0
2 + 2e]0]1 + e2s2]0]2 + ]1

2d + 2e3s]0]3

+ ]1]2dggn,j + icjo
n=0

`

enf]0 + e]1 + e2]2 + e3]3ggn,j

+ eicjo
n=0

`

enSn,j − eao
n=0

`

o
d=±1

enRn,j+d. sA2d

Extracting all terms ofOse0d yields

1 = icjb̃c]0
2g0,j + icj]0g0,j . sA3d

The solution to the homogeneous version of Eq.sA3d is

g0,j =A+Be−T0/b̃c, where A and B are constantswith re-
spect to the T0 time scale. The exponential term is
dropped because it represents transient behavior. We take a
particular solution to the inhomogeneous equation of the
form g0,j

spd=Cj
s0dT0, where Cj

s0d is independent ofT0. Sub-

stitution of g0
spd into Eq. sA3d yields Cj

s0d=1/icj. So the so-
lution to Eq.sA3d can be written as

g0,j =
T0

icj
+ f jsT1,T2,T3d, sA4d

where one can think off j as describing the slow phase dy-
namics ofg0,j.

Setting the coefficients of theOse1d terms in Eq.sA2d to
zero gives

0 = b̃cf]0
2g1,j + 2]0]1g0,jg + f]0g1,j + ]1g0,jg

+ S0,j −
a

icj
o

d=±1
R0,j+d, sA5d

where we have divided by a factor oficj. This result is writ-
ten as

b̃c]0
2g1,j = − 2b̃c]0]1g0,j − ]1g0,j − S0,j +

a

icj
o

d=±1
Ro,j+d.

sA6d

Based on Eq.sA4d we can calculate the derivatives on the
right side of Eq.sA6d. We find

]0]1g0,j =
]

]T0

]

]T1
FT0

icj
+ f jsT1,T2,T3dG =

]

]T0
S ]f j

]T1
D = 0,

becausef j is independent ofT0. Also

]1g0,j =
]

]T1
FT0

icj
+ f jG =

]f j

]T1
= ]1f j .

Next we look at the nonlinear terms on the right side of
Eq. sA6d:

S0,j = sinST0

icj
+ f jD ,

R0,j+d = sinF sT0/icj − T0/ic,j+dd + sf j+d − f jd
2

G
< sinFf j+d − f j

2
G ,

where in the limit of small disorder we have assumed
T0s1/icj−1/ic,j+dd<0. So Eq.sA6d can be written as

b̃c]0g1,j + ]0g1,j = − ]1f j − sinST0

icj
+ f jD + Mj , sA7d

whereMj =sa / icjdod sinfsf j+d−f jd /2g is a constant with re-
spect toT0. Temporarily ignoring the derivative]1f j on the
right side of Eq.sA7d and using the trigonometric identity for
the sine of a sum of two quantities, we find a particular
solution to Eq.sA7d of the form

g1,j = MjT0 + Cj
s1d sinST0

icj
D + Dj

s1d cosST0

icj
D , sA8d

where

Cj
s1dsT1,T2d =

icj
2 sb̃c cosf j − icj sinf jd

icj
2 + b̃c

2
, sA9d

Dj
s1dsT1,T2d =

icj
2 sb̃c sinf j + icj cosf jd

icj
2 + b̃c

2
. sA10d

The termMjT0 in Eq. sA8d represents a secular term that
grows without bound asT0→`. To remove this term from
the solution we impose the condition

− ]1f j + Mj = 0,

which gives

]f j

]T1
=

a

icj
o

d=±1
sinFf j+d − f j

2
G . sA11d

This in turn gives a solution forg1,j that is Eq.sA8d without
the secular term. Note that Eq.sA11d measures the rate of
change off j, and henceg0,j, with respect to the slow time
scaleT1.

Next, we look at all terms in Eq.sA2d that areOse2d:

b̃c]0
2g2,j + ]0g2,j = − 2b̃c]0]1g1,j − b̃cs2]0]2 + ]1

2dg0,j − ]1g1,j

− ]2g0,j − S1,j +
a

icj
o

d=±1
T1,j+d. sA12d

Using the known results forg0,j and g1,j to calculate the
derivatives on the right side of Eq.sA12d, and using the
expression forS1,j and T1,j+d, means that Eq.sA12d can be
written safter some algebrad as

b̃c]0
2g2,j + ]0g2,j = − ]2f j + Vj + Wj sinST0

icj
D + Xj cosST0

icj
D

+ Yj sinS2T0

icj
D + Zj cosS2T0

icj
D , sA13d

where
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Vj = − b̃c]1
2f j −

icj
3

2sicj
2 + b̃c

2d
,

Wj =
2b̃c

icj
Cj

s1d]1f j + Dj
s1d]1f j

+
a

2icj
o

d=±1
sCj+d

s1d − Cj
s1ddcosFf j+d − f j

2
G ,

Xj =
2b̃c

icj
Dj

s1d]1f j + Cj
s1d]1f j

+
a

2icj
o

d=±1
sDj+d

s1d − Dj
s1ddcosFf j+d − f j

2
G ,

Yj = −
1

2
fCj

s1d cosf j − Dj
s1d sinf jg,

Zj = −
1

2
fCj

s1d sinf j + Dj
s1d cosf jg,

whereCj
s1d and Dj

s1d are given by Eqs.sA9d and sA10d. As
with the first-order case, we want a solution to Eq.sA13d that
does not have any secular terms. Therefore we must impose
the condition

]f j

]T2
= Vj = − b̃c

]2f j

]T1
2 −

icj
3

2sicj
2 + b̃c

2d
. sA14d

Based on Eq.sA11d it is possible to calculate]2f j /]T1
2,

which appears on the right side of Eq.sA14d. We find

]2f j

]T1
2 =

a

icj

]

]T1
o

d=±1
sinFf j+d − f j

2
G

=
a2

2icj
2 F o

d=±1
sinsf j − f j+dd +

1

2 o
d=±2

sinSf j+d − f j

2
D

− sin2S¹2f j

2
D +

1

2 o
d=±1

sinS¹2f j+d

2
DG

;
a2

2icj
2 Z j , sA15d

where we approximated 1/sicjic,j±1d with 1/icj
2 . Note that

¹2f j ;f j+1−2f j +f j−1. Substituting Eq. sA15d into Eq.
sA14d yields

]f j

]T2
= −

icj
3

2sicj
2 + b̃c

2d
−

a2b̃c

2icj
2 Z j . sA16d

Our next step is to calculate the derivativedg0,j /dt with
respect to the original dimensionless time variablet= t̃ / iB.
We find

dg0,j

dt
= iB

dg0,j

dt̃
= iBf]0 + e]1 + e2]2gFT0

icj
+ f jsT1,T2dG

=
iB
icj

+
a

icj
o

d=±1
sinFf j+d − f j

2
G

−
icj
3 /iB

2sicj
2 + iB

2bc
2d

−
a2bc

2icj
2 Z j , sA17d

where use was made of the expressionse=1/iB and b̃c
= iBbc. It is convenient to define the quantity

V j =
iB
icj
F1 −

sicj/iBd4

2hbc
2 + sicj/iBd2jG . sA18d

Physically, one can think ofV j as the angular frequency
saverage voltaged of oscillator sjunctiond j in the absence of
coupling. Then Eq.sA17d can be written as

dg0,j

dt
= V j +

a

icj
o

d=±1
sinFf j+d − f j

2
G −

a2bc

2icj
2 Z j .

It is also useful to calculate the second derivative ofg0,j:

d2g0,j

dt2 = iB
2 d2g0,j

dt̃2

= iB
2f]0

2 + 2e]0]1 + e2s2]0]1 + ]1
2dgf j

=
a2

2icj
2 Z j , sA19d

where we made use of Eq.sA15d. It is common practice at
this juncture to replace the symbolg0,j in Eq. sA17d with f j,
which we shall also do in Eq.sA19d.

Finally, motivated by the structure of Eq.s16d, consider
the combination of terms

icjbc
d2f j

dt2 + icj
df j

dt
.

Substituting for the derivatives from Eq.sA17d and sA19d
and dividing through by a factor oficj results in the expres-
sion

bc
d2f j

dt2 +
df j

dt
= V j +

a

icj
o

d=±1
sinFf j+d − f j

2
G , sA20d

which is Eq.s33d in Sec. II B. A straightforward but tedious
continuation of the analysis toOse3d then leads to Eq.s25d in
Sec. II B.
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