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We study synchronization in disordered arrays of Josephson junctions. In the first half of the paper, we
consider the relation between the coupled resistively and capacitively shunted juiRB&J equations for
such arrays and effective phase models of the Winfree type. We describe a multiple-time-scale analysis of the
RCSJ equations for a ladder array of junctievith non-negligible capacitanc@ which we arrive at a second
order phase model that captures well the synchronization physics of the RCSJ equations for that geometry. In
the second half of the paper, motivated by recent work on small-world networks, we study the effect on
synchronization of random, long-range connections between pairs of junctions. We consider the effects of such
shortcuts on ladder arrays, finding that the shortcuts make it easier for the array of junctions in the nonzero
voltage state to synchronize. In two-dimensio(®D) arrays we find that the additional shortcut junctions are
only marginally effective at inducing synchronization of the active junctions. The differences in the effects of
shortcut junctions in 1D and 2D can be partly understood in terms of an effective phase model.
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I. INTRODUCTION have shown thaty, grows without bound in thé&l— oo limit

The synchronization of coupled nonlinear oscillators hagﬂSeveral years ago, Watts and Strogatz introduced a simple
been a fertile area of rgsearch for decaldsin particu!ar, model for tuning coll,ections of coupled dynamical systems
phas_e models of '_[he W|_nfree typ2] h_ave be_e” exter_lswely etween the two extremes of random and regular networks
studied. In one dimension, a generic version of this modeFﬂ_ In this model, connections between nodes in a regular
for N oscillators is array are randomly rewired with a probabilify such that

do N p=0 means the network is regularly connected, wipitel
—1 =Q;+ > o L(6c— 6), (1) results in a random connection of nodes. For a range of in-
dt k=1 termediate values gb between these two extremes, the net-

whereg; is the phase of oscillatgy which can be envisioned yvork retains a property of regu!ar hetworles large cluster-
ing coefficienj and also acquires a property of random

as a point moving around the unit circle with angular veloc- ]
ity d6;/dt In the absence of coupling, this overdamped os_networks(a short characteristic path length between npdes

cillator has an angular velocit,. I'(6, 6 is the coupling Networks in this intermediate configuration are termed

function, ando , describes the range and natgeeg., attrac- small-world” networks. Many examples of such _small
: 1K ; . worlds, both natural and human made, have been discussed
tive or repulsive of the coupling. The special case

(6= 6)=Sin(f—6), o =a/N (a=cons}, corresponds to [8]. Not surprisingly, there has been much interest in the
the uniJform sinusjo’idaii coupling of eac,h oscillator to thesynchromzauon of dynamical systems connected in a small-

remainingN -1 oscillators. This mean-field system is usually world geometry [9-17. Generically, such studies have
called the (globally coupledl Kuramoto model (GKM). shown that the presence of small-world connections makes it

Kuramoto was the first to show that for thi rticular form easier for a network to synchronize, an effect generally at-
uramoto was the irst to snow that for this particular 1orm ., e to the reduced path length between the linked sys-
of coupling and in theN— o limit, there is a continuous

) i~ - > tems. This has also been found to be true for the special case
dynamical phase transition at a critical value of the couphnqn which the dynamics of each oscillator is described by a
strengtha, and that fora> o, both phase and frequency Kuramoto mode[13,14]

S);rylchrohnlzatlon lf';lppefar in the sys.u{mﬂ. If foi%_ @0 e As an example of physically controllable systems of non-
whiie the coupling function retains the forri(¢~gJ linear oscillators which can be studied both theoretically and
=sin(6,- 6)) we havg the so-calle-d Ioca.lly coupled Kurampto experimentally, Josephson junctiqd) arrays are almost
model(LKM), in which each oscillator is coupled only to itS yithout peer. Through modern fabrication techniques and
nearest neighbors. Studies of synchronization in the LK

. ; , . ~Vcareful experimental methods one can attain a high degree of
[5], including extensions to more than one spatial d'mens'oncontrol over the dynamics of a JJ array, and many detailed

aspects of array behavior have been stuliegdl. Among the
many different geometries of JJ arrayadder arrays (see
*Electronic address: brtrees@owu.edu Fig. 1) deserve special attention. For example, they have
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voltage state have equéo within some numerical preci-
sion time-averaged voltages#/2e)(dg;/dt);, where 6; is

the gauge-invariant phase difference across jungtidviore
recently, the “slow” synchronization dynamics of finite-
capacitance serial arrays of JJ’'s has also been studied
[23,24. Perhaps surprisingly, however, no experimental
work on JJ arrays has verified the accuracy of this GKM
mapping. Instead, the first detailed experimental verification
of Kuramoto’s theory was recently performed on systems of
coupled electrochemical oscillator@5].

Recently, Daniel®t al. [26], with an eye toward a better
understanding of synchronization in 2D JJ arrays, showed
that a ladder array afverdampedgunctions could be mapped
onto the locally coupled Kuramoto model. This work was
based on an averaging process, as in R4f|, and was valid

Ip in the limits of weak critical current disordefless than
about 10% and large dc bias currenig along the rung
junctions(lg/{l)= 3, where(l) is the arithmetic average of

) . . the critical currents of the rung junctionsThe result dem-
FIG. 1. Ladder array with periodic boundary conditions &hd onstrated, for both open and periodic boundary conditions,

=8 plaquettes. A uniform, dc bias currely is 'ns.erteq into and .Ehat synchronization of the current-biased rung junctions in
extracted from each rung as shown. The gauge-invariant phase dif-

ference across the rung junctions is denotedypwhere 1<j<N, theTIr?dder IIS V}/elrl] described by Eq]‘) fold. Ei il
while the corresponding quantities for the off-rung junctions along e goal of the present work is twofold. First, vye Wi
the outer(innen edge arey,; (y;). The rung junctions are as- demonstrate that a ladder array whderdampedunctions

sumed to be disordered while the off-rung junctions are uniform. ¢a&n beé mapped onto a second-order Winfree-type oscillator
model of the form

P

been observed to support stable time-dependent, spatially lo- ) N
calized states known as discrete breath@fs. In addition, dv¢, do _ B
the ladder geometry is more complex than that of better un- a dr * dt ~ Q;+ k%‘Tj,kr(@k 6), (2

derstood serial arrays but less so than fully two-dimensional
(2D) arrays. In fact, a ladder can be considered as a speciatherea is a constant related to the average capacitance of
kind of 2D array, and so the study of ladders could throwthe rung junctions. This result is based on the resistively and
some light on the behavior of such 2D arrays. Also, linearlycapacitively shunted junctiofRCSJ model and a multiple
stable synchronization of the horizontal, or rung, junctions intime scale analysis of the classical equations for the array.
a ladder(see Fig. 1is observed in the absence of a load overSecond, we study the effects of small-wofl8W) connec-
a wide range of dc bias currents and junction parametergons on the synchronization of both overdamped and under-
(such as junction capacitangso that synchronization in this damped ladder arrays. We will demonstrate that SW connec-
geometry appears to be robyig0]. tions make it easier for the ladder to synchronize, and that a
In the mid 1990s it was shown thatsarial array of zero-  Kuramoto or Winfree type mod¢Egs.(1) and(2)], suitably
capacitance, i.e., overdamped, junctions coupled to a loageneralized to include the new connections, accurately de-
could be mapped onto the GKI§R1,22. The load in this scribes the synchronization of this ladder.
case was essential in providing an all-to-all coupling among This article is organized as follows. In Secs. Il and IIl we
the junctions. The result was based on an averaging procegdiscuss the multiple-time-scale technique for deriving the
in which (at leas} two distinct time scales were identified: coupled phase oscillator model for thederdampedadder
the “short” time scale set by the rapid voltage oscillations ofwithout SW connections. We compare the synchronization of
the junctions(the array was current biased above its criticalthis “averaged” model to the exact RCSJ behavior. We also
curren} and “long” time scale over which the junctions syn- analyze how the array’s synchronization depends on the ca-
chronize their voltages. If the resistively shunted junctionpacitance of the junctions. In Sec. IV, we study the effects of
(RSJ equations describing the dynamics of the junctions aré&SW connections, or shortcuts, on the synchronization of both
integrated over one cycle of the “short” time scale, whatoverdamped and underdamped ladders. In our scenario, each
remains is the “slow” dynamics, describing the synchroniza-SW connection is actually another Josephson junction. We
tion of the array. This mapping is useful because it allowsgeneralize our phase oscillator model to include the effects
knowledge about the GKM to be applied to understandingdf shortcuts and relate our results to earlier work on
the dynamics of the serial JJ array. For example, the authotsuramoto-like models in the presence of shortdut3,14.
of Ref. [21] were able, based on the GKM, to predict theIn Sec. V we study the effects of SW connections on syn-
level of critical current disorder the array could tolerate be-chronization in disordered 2D arrays. Here we find that the
fore frequency synchronization would be lost. Frequencydisordered 2D array, which doest fully synchronize in the
synchronization, also described as entrainment, refers to thgristine caséi.e., in the absence of shortcyts only weakly
state of the array in which all junctionsot in the zero- synchronized by the addition of shortcut junctions between
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superconducting islands in the array. In Sec. VI we conclude dy, . dz_yl , dif |
—li¢Be 42 —asinyj-a

and discuss possible avenues for future work. g —igjsiny; —ig dr dr
A’y - difj-a Ay
Il. PHASE MODEL FOR UNDERDAMPED LADDER - aIBC—'i + a sin ¢l,j—l+ a——1== + algc_'l_ =0,
d~ dr d~
A. Background
(93

The ladder geometry is shown in Fig. 1, which depicts an
array with N=8 plaquettes, periodic boundary conditions, dv. @ Ay
and uniform dc bias currentg along the rung junctions. The - + igjsiny, + icj—yl + ichc—yl —asiny; - a—21
gauge-invariant phase difference across rung jungtisry;, dr dr? dr
while the phase difference across the off-rung junctions A2y, _ di i g
along the outefinner) edge of plaquettg is ¢y ; (¢,,). The - aﬂcd—Tz'l +tasinygy 1+ a—d’TJ— + aﬁcﬁ— =0,
critical current, resistance, and capacitance of rung jungtion
are denoted;, R;, andC;, respectively. For simplicity, we (9b)
assume all off-rung junctions are identical, with critical cur-
rentl., resistanceR,, and capacitanc€,. We also assume
that the product of the junction critical current and resistanc
is the same for all junctions in the arrf®7], with a similar
assumption about the ratio of each junction’s critical currenf
with its capacitance: y

where I=j<N. The result is a set of R equations in Bl
émknowns:yj, Y j, and i, ;. We supplement Eq9) by the
constraint of fluxoid quantization in the absence of external
r induced magnetic flux. For plaquetjethis constraint
ields the relationship

() Yt o= ¥+~ =0. (10
IR = 1coRy = =5 3
cj j_coRo— R_la () . .
(R Equations(9) and(10) can be solved numerically for theN3
phasesy;, i j, and i, ; [28].
lei | (o We assign the rung junction critical currents in one of two
e _lco_ 1N/ 4) "
c _c, (c) ( ways, randomly or nonrandomly. We generate random criti-
j (o]

cal currents according to a parabolic probability distribution
where for any generic quantit§, the angular brackets with function (PDF) of the form
no subscript denote an arithmetic average over the set of
rung junctions,(X}z (1/N)EJN:1XJ-. P(iy) = i[AZ —(i.— 1)2] (11)
For convenience, we work with dimensionless quantities. < 4A3 ¢ ’

Our dimensionless time variable is , .

wherei.=I./{l.) represents a scaled critical current, akhd
t_ 2t 5 determines the spread of the critical currents. Equatidn
t. W(RY’ () results in critical currents in the range A<i.<1+A. Note
_ _ _ _ _ _ that this choice for the PDFalso used in Refl21]) avoids
\_/vheret is the ordinary time. The dimensionless bias currentextreme critical current§relative to a mean value of unijty

T

IS that are occasionally generated by PDF’s with tails. The non-
random method of assigning rung junction critical currents
ig= I_B, (6)  Was based on the expression
(o)
: . . " . L _— 2A 5 . 2
while the dimensionless critical current of rung junctipis igg=1+A- N_ 1 5[4j7— 4N+ 1D)j+(N+1)7],
icj=l¢;/{l). The McCumber parameter in this case is ( )
_ 2&{1XC) 1<j<N, (12
BC_ ﬁ<R_1>2 . (7)

which results in thei; values varying quadratically as a
Note thatg; is proportional to the mean capacitance of thefunction of position along the ladder and falling within the
rung junctions. An important dimensionless parameter is range 1-A<ig<1+A. We usually useA=0.05.

a=-2 (8) B. Multiple-time-scale analysis

1ol Our goal in this subsection is to derive a Kuramoto-like
which will effectively tune the nearest-neighbor interaction model for the phase differences across the rung junctigps,
strength in our phase model for the ladder. starting with Eq.(9). We begin with two reasonable assump-

Conservation of charge applied to the superconductingions. First, we assume there is a simple phase relationship
islands on the outer and inner edge, respectively, of rungetween the two off-rung junctions in the same plaquette:
junction j yields the following equations in dimensionless
variables: Yoy =— (13
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the validity of which has been discussed in detail elsewher&etting d,= d/JT,, the first and second time derivatives can

[26,29. As a result, Eq(10) reduces to be written as
_YiT Y+ d
hi="— (14 — =gy + €0y + 0y + €30, (20)
dr
which implies that Eq(9a) can be written as
d2
L a_ﬁc{ 1,8y, d_n_] 5= 2edniy + E2d00y + ) + 2o+ nd),
! drz E dT 2 d72 dr? d7?
d d d (2Y)
@ [ dys 0y, _n_l}
2| dr dr dr where in Eq.(22) we have dropped terms of ordet and
o higher.
=ig—igSiny + a, sin(%)_ (15) Next, we expand the phase differences ineagxpansion
5=%1
Our second assumption is that we can neglect the discrete ¥ = D (T TL T2 To). (22)

Laplacian terms in Eq. (15, namely, VZ(dy;/d7)

—d'yj+1/d7' 2dy;/dr+dy;_4/d7 and V2(d2y;/ d7?)

=d%y;,1/d7? =202y, /d7?+d?yj_/d7?. We find numerically, ~Substituting this expansion into E¢L8) and collecting all
over a wide range of bias currerits McCumber parameters terms of ordere® results in the expression

B., and coupling strengthser that V2(dy,/d7) and ~

V(d?y;/d7®) oscillate with a time-averaged value of ap- 1=i¢iBeda¥oj +icidoo, (23
proximately zero. Since the multiple-time-scale method is

similar to averaging over a fast time scale, it seems reasorfor which we find the solution

able to drop these terms. In light of this assumption, (&)

becomes T
Yoj= I—O +¢j(T1, T2, Ta), (24)
b, Yiro =Y ci
D
cﬂc +igj =ig—ig Sinvy; +a2 s|n( i i
| dTZ dr l = 2 where we have ignored a transient term of the famv?c,

(16) and whereg;(T;,T,, Ty) is assumed constant over the fastest
] . . time scaleT,. Note that the expression fo; consists of a
_ We can use Eq(16) as the starting point for a multiple- rapid phase rotation described Hy/i.; and slower-scale
time-scale analysis. Following Ref&23,24, we divide Eq.  temporal variations, described ky, on top of that overturn-
(16) by ig and define the following quantities: ing. In essence, the goal of this technique is to solve for the
(17a dynamical behavior of the slow phase varialle The re-

7= 187, maining details of the calculation can be found in the Appen-
- dix. We merely quote the resulting differential equation for
Be=igBe, (170 the ¢; here:
=1/i d ivs— i
€= 1lig. (179 5 dj;) _¢1 S04k S Sm[mz ¢]
In terms of these scaled quantities, Ebp) can be written as =
dy Yiss~ Y, +L sin{3(w>]
_lqﬁc dsz +|dev + € Siny; - eaE sm(—"sz—l). J(z‘l 2
(19) NS> {co{@“;;él]
Next, we introduce a series of foudimensionlesstime o=l
scales, rs— i
—co{3<—’—l¢ 52 ¢>” (25)
T,=¢€7 n=0,1,2,3, (19

which are assumed to be independent of each other. Nowhere(); is given by the expressiofletting x;=i;/ig for
that 0<e<1 sincee=1/ig. We can think of each succes- convenience

sive time scal€eT,, as being “slower” than the scale before 4
it. For example,T, describes a slower time scale th@pn QO = 1], X (26)
The time derivatives in E(18) can be written in terms of o (2B82+x9)

the new time scales, since we can thinkofas being a
function of the four independent,’s, 7=7Ty,T;,T,,T3).  and the three coupling strengths are
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B s I vl (27)

x4(3x-2+ 23,35) I1l. COMPARISON OF LKM2 AND RCSJ MODELS
168:+%)% |’

We now compare the synchronization behavior of the
RCSJ ladder array with the LKM2. We consider frequency
: £x4(3[3§—x-2) and phase synchronization separately. For the rung junctions

i~ i 16(,8§+xj2)2' (28) of the ladder, frequency synchronization occurs when the
time-average voltage®,),=(d¢;/d7), are equal for allN

5 junctions, within some specified precision. In the language of

e X Be ] (29) coupled rotators, this corresponds to phase points moving

PG aBi+x)? around the unit circle with the same average angular velocity.

, . ) We quantify the degree of frequency synchronization via an
We emphasize that Eq25) is expressed in terms of the «qrqer parameter”

original, unscaled, time variableand McCumber parameter

Be.
We will generally consider bias current and junction ca- s,(a)
pacitance values such thaf<pgZ. In this limit, Egs. f=1 "0 (34)
(27)—29) can be approximated as follows: S
Kj— g[1 +O(%)}, (30) wheres,(«) is the standard deviation of thé¢ time-average
Icj Is voltages (v;).:
L) oL (31) NT N 7

s,(e) = — 1 ~. (35

5
mo-ilag) oy} e
“ ¢ B In general, this standard deviation will be a function of the
For large bias currents, it is reasonable to truncateEg.at ~ coupling strengthr, sos,(0) is a measure of the spread of
O(l/ig), which leaves the (vj), values forN independent junctions. Frequency syn-
, chronization of allN junctions is signaled _b;le, while
,Bc(ij_j;l N c:j_¢l —q+ ig D sin[ bDirs— b } @3 L;;) means alN average voltages have their uncoupled val
T clo=t Figure 2 compares the order paramdtéor an array with
where all the cosine coupling terms and the third harmonid\=10 plaquettes, a bias currentigi=5, and nonrandomly
sine term have been dropped as a result of the truncation. 8ssigned critical currents with=0.05 for both the RCSJ
In the absence of any coupling between neighboring rungnodel and the LKM2. For the RCSJ model, E(®.and(10)

junctions(a=0) the solution to Eq(33) is were solved numerically using a fourth-order Runge-Kutta
algorithm with a time step ofA7=0.005 and a total of 5
A0 = A+ Be he + W, X 10P time steps. All time-average quantities were evaluated

. using the second half of the time interval. For the LKM2, the

whereA andB are arbitrary constants. Ignoring the transientsame numerical approach was applied to G3).
exponential term, we see thd’kﬁf“zo)/drzﬂj, SO we can Figure 2 shows some interesting behavior. First, in gen-
think of (); as the voltage across rung junctipin the un-  eral, the LKM2 agrees well with the RCSJ model, especially
coupled limit. Alternatively(); can be viewed as the angular in predicting a critical coupling strengtla, at the onset of
velocity of the strongly driven rotator in the uncoupled limit. full frequency synchronizatiotif=1). Second, a3 is in-
Equation (33) is our desired phase model for the rung creased both models show evidence of a first-order transition
junctions of the underdamped ladder. The result can be det o [see Fig. 2d)] at whichf jumps abruptly to a value of
scribed as a locally coupled Kuramoto model with a secondunity. In the vicinity of such an abrupt transition, the models
order time derivative(LKM2) and with junction coupling differ the most, but even in Fig.(@), the RCSJ model and
determined byx. In the context of systems of coupled rota- the LKM2 agree on the value af.. The deviation between
tors, the second derivative term is due to the non-negligiblehe models seen in Fig.(® neara~=0.4 could be due to a
rotator inertia, whereas in the case of Josephson junctions thregion of bistability nearn, that becomes more prominent
second derivative arises because of the junction capacitander increasingg..
The globally coupledversion of the second-order Kuramoto  Figure 3 shows the case where the critical currents are
model(GKM2) has been well studied; in this case the oscil-assigned randomly according to E41) with A=0.025 for
lator inertia leads to a first-order synchronization phase tranN=15,ig3=5, and8.=20. The results for the frequency syn-
sition as well as to hysteresis between a weakly and a&hronization order parameter were obtained by averaging
strongly coherent synchronized st89,31]. over ten different critical current realizations, and the error
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(a) (b)
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f o _FIG. 2. (Color online Frequency synchroni-
0.0 . . . . . 0.0 . : y - - zation order parametdr, plotted versus nearest-
00 01 D2 03 04 05 6o 01 02 03 08 05 neighbor coupling strengtr for a ladder with

o FR— o N=10 plaquettes and bias currei=5. Rung
+ LKM2 junction critical currents are assigned nonran-
(c) (d) domly with A=0.05. 8.=(a) 1, (b) 5, (¢) 10,
10 PR 10 R and (d) 20. For each plot the phase differences
and voltages are reset to zero with each new
08 4 value of a.
0.6 - At
- -
04 4 +
o2 Mﬁ.ﬂ‘ +
0.0 A :
05 00 01 02 03 04 05
a [0

bars are the standard deviation of the mean valué for ~ gests that the finite-size fluctuations for smallare more
each a. Note the excellent agreement between the RCSpronounced at larg@. [compare with Figs. @), 4(b), and
model and the LKM2. Also note that averaging over critical4(c)]. Since the second-order Kuramoto model wifobal
current realizations has a smoothing effecf @ompared to, ~coupling has discontinuities ifir|), as a function of coupling

for example, Fig. &). strength for large array80], and since we have mapped the
Phase synchronization of the rung junctions is measureRCSJ model to the LKM2, it would be interesting to look for
by the usual Kuramoto order parameter evidence of a first-order transition ifr|), for large arrays.

Such evidence is already visible, even for arrays as small as
N=10, in the frequency synchronization order paramjetee

Fig. 2(d)].
— 1 i by We have also studied the synchronization in our two mod-
r==>é%. (36) . . . _ _
Niz els as a function of the dc bias curraptfor fixed coupling

a, as shown in Fig. 5. Such a graph is useful because experi-

ments on periodic ladders would most likely be performed at
The results shown in Fig. 4 represent the time-averagel*ed @ (Since that quantity is set by the fabrication of the
modulus ofr, (|r]),, which approaches unity when the phaserung and _off-rung Jungnonswh_lle the bias current could be

. ' T . X : ) . easily varied. To obtairi experimentally, then, one needs to

differences across the junctions are identical. Figure 4 cOMyeasyre the time-average voltages across the rung junctions
pares the phase synchronization of the RCSJ model and thg; each value of the bias current. Figur@sdemonstrates
LKM2 for the same geometry as in Fig. 2. The agreementhat as the bias current is increased for fixed coupling
between the two models is excellent. Note the two types oktrength, frequency synchronization is eventually lost. This is
behavior observable in the plots. For small couplingreasonable physically; as a rotator is driven harder a stronger
(@=0.7), (|r[), displays a complicated behavior due to finite- coupling with its neighbors should be required to keep the
size effects, while fore=0.7, (|r[), exhibits a smooth rise rotators entrained. Figurgl® plotss,(«,ig) versusig, show-
toward a value of unity with increasing coupling. In fact, ing that the spread in junction voltages scales linearly with
comparison of Figs. 2 and 4 shows that the valuexcfig-  the bias current over a wide range of currents. The behavior
naling the onset of the smooth increase in phase synchrongbserved in both Figs.(8 and 3b) for bias currents ofg
zation is approximately equal te,, the value at which full =10 is not surprising. When the system is far from fre-
frequency synchronization is obtained. Figufd)4also sug- quency synchronization, the time-averaged voltages should
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" | i \/Eil[lliq—(1/N)E|’:‘:1(1/ick)]2
a,lg) =1

N-1

= Cig,

0.8 -

(37

whereC is a constant independent of the bias current. Thus
the linear scaling of, with bias current is just due to the
scaling of the time-averaged voltages across the rung junc-
tions withig. Equation(37) is actually the standard deviation
‘ . . in the limit «— 0, so for bias currents large enough that the
0.10 0.15 0.20 junctions can be treated as approximately independent, we
expects,(«a,ig)/s,(0,ig) — 1, which in turn means—0, as
observed in Fig. &).

FIG. 3. (Color onling Frequency synchronization order param- Figure 6 shows that "'IL0<UJ>FQj- To obtain this result,
eter f, plptted versus nearest-.neighbor. coupling strengtfor a <vj>r(iB) across thé =1 rung junction was calculated numeri-
ladder withN=15 plaquettes, bias curreiy=5, andB.=20. Rung cally for the RCSJ model foB,=1 and «=0.01, which is

junction critical currents are assigned randomly with0.025, and more than an order of magnitude smaller thanThe results

results are averaged over ten realizations of critical currents. Error S .
e are shown as solid circles. The dotted line represents the
bars represent the standard deviation of the mean val@i@d for

clarity only a few, representative error bars are shown. Numericaﬁnalytlc, expressiofv,),={;, Whe,reﬂl, is given by Eq.(2-6)
solution of the RCSJ model are denoted by filled circles, and thénd which results from our multiple-time-scale analysis. The
results from the LKM2 are denoted by crosses. solid line is the large-bias-current limit of E(R6), namely,
Qq=iglic;. Note that the numerical results agree well with
Eq. (26) for a<a, over the entire range of bias currents
be well approximated by their values in the absence of coushown, and with the large-bias-current result ifge 2.5.

[0

pling, namely(v;),~;, where(); is given by Eq.(26). In Of particular interest is how the array behaves near the
the limit (icj/iB)2< 1, Eq.(26) givesQ;=igli;. In this case, frequency synchronization transitiom,~ a.. As shown in
we can write Fig. 7(a) for an array withN=10 plaquettes driven by a bias
(a) (b)
1.0 1.0 ./i——'
08 - 08 K
[ ]
®
e 0.6 1 e 0.6 ')
A A
= = P
vV 044 V 046
e ©
o
0.2 - 02 44 |
[
- ' ' ' ' ' - FIG. 4. (Color online Phase synchronization

0o 1 2 3 4 5 6 0 1 2 3 i 5 6 order parameter(r|),, plotted versus nearest-
neighbor coupling strengtlr for a ladder with
¢ ® RCSJ ¢ N=10 plaquettesig=5, and nonrandom critical
© —+— LKM2 d) currents withA=0.05. B.=(a) 1, (b) 5, (c) 10,
and (d) 20. For each plot phase differences and
10 10 voltages across rung junctions are reset to zero
with each new value of.
08 - 0.8
v 06 06
A A
= =
v 04 € v 0.4 <
0.2 + 02 |
0.0 T T T T T 0.0
0 1 2 3 4 5 6 0 1 2 3 4 5 6
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0.8 -

0.6 -

04 - 1-#

02 % 10 15 20 25 30 35

0.0 ' d FIG. 6. Time-averaged voltage acrgssl rung junction, plotted
5 10 15 20 versus bias curreng for N=10, =0.01< «,, and8.=1. The solid
i circles are the numerical result from the RCSJ model. They agree
g RCSJ well with the analytical result for the weak-coupling limify 1),
LKM2 =4, whereQ, is given by Eq.(26), which is represented by a
(b) dashed line in the graph. Deviations from the large bias current
result,(vy),~igli¢ (solid line), do not appear untilz<2.5.

T @

Afpall —eDEB], B = f,
0, Be < Be.

For ,3C<,BZ the frequency synchronization transition is a
smooth function ofx as« decreases through, from above.
Thus, the junctions must be sufficiently underdamped for the
discontinuous nature of the transition to be manifgBut

Fig. 7(a) gives at least the hint of a possible discontinuity in
Af for B.,=8 arounda=0.37< a..] The data in Fig. 7 were
obtained from a numerical solution of the RCSJ model, but
we see qualitatively similar behavior from a numerical solu-
tion of Eq. (33), namely, saturation oAf to a maximum
value that is well fitted by an exponential function.

Lastly in this section, we address the issue of the linear
stability of the frequency synchronized states> «a.) by
calculating their Floquet exponents numerically for the RCSJ
model as well as analytically based on the LKM2, E2p).

FIG. 5. (Color onling (a) Frequency synchronization order pa- 1he analytic technique used has been described in detail
rameter f, plotted versus dc bias curreny for fixed coupling  €lsewherg33], so we shall merely quote the result for the
strengtha=0.25 for both the RCSJ model and the LKM2=10,  real part of the Floquet exponents:

B.=5, and nonrandom critical currents witt=0.05. (b) Standard

Af = (38)

sv(a’iB)

deviation of time-averaged rung junction yoltages versus bias cur- Re(\nto) = - i[l + Re\/l — 4/30(?4_ 3f)wr2nJ, (39)
rent for the same model parameters agan The difference be- 28

tween the two models evident at large bias currents is probably due . .

to phase slips in the off-rung junctions that violate EtB). where stable solutions correspond to exponeniswith a

negative real part. One can think of theg, as the normal

mode frequencies of the ladder. We find that for a ladder with
currentig=5, the order parameter develops a discontinuity aperiodic boundary conditions and plaquettes
a, for B.=8. In addition, for sufficiently larges. the array

also exhibits hysteretic behavior fnas shown in Fig. 8. The w2 = 4 sirf(mar/N)
behavior depicted in Figs. 7 and 8 is presumably due to ™ 1+ 2sirf(mm/N)’
bistability of the individual junction$32] arising from their _ _ .
non-negligible capacitance. Figuréby shows that for in- To arrive at Eq(39) we have ignored the effects of disorder
creasingp, the discontinuity in the order parameter @t  so thatk andL are obtained from Eq$27) and(28) with the
Af, can be well fitted by an exponential rise that asymptoti-substitutioni;j— 1 throughout. This should be reasonable for
cally saturates to a valu&f ., for B.—», i.e., the levels of disorder we have conside(&86). Substituting

=m=N-1. (40)
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FIG. 7. () (Color online Frequency synchronization order pa- FIG. 8. Hysteresis in the_ frequency sync_hronization order pa-
rameterf, plotted versus coupling strengthfor a ladder withn ~ rameterf, plotted as a function of the coupling strengthfor a
=10, ig=5, and nonrandom critical currents with=0.05. Results ~adder withN=10, ig=5, 5.=30, and nonrandom critical currents
based on the RCSJ model for ten differghtvalues are shown. In  With A=0.05. To produce these plots, is initialized to a value
these simulationsy is initialized to a value greater than and then ~ 9reater thany and then gradually decreased until the system jumps
gradually decreased. With each new valueothe phase differ- discontinuously to the unsynchronized state; the coupling then
ences and voltages across the rung junctions are reset to zero. Ndiéreased until the system jumps back to the synchronized state.
the appearance of a discontinuity firas 3, is increased. There is The flnal values Qf the phase dlffer.ences and voltages across the
also some evidence of additional discontinuities for a < ag (see, ~ 1UNCtions, as obtained from the previous valuewre used as the
for example, the data foB.=8,12. (b) Discontinuity in the fre- initial values for each new value af. (a) Results based on the
quency synchronization order paramelefr at a=a, for different RCSJ model(b) Results baseq on the.LKMZ. Note that the models
values of .. This graph is produced from the data foversusa ~ @dree on the value of; at which the jump occurs from the syn-
seen in(a). The discontinuity is well fitted by an exponential rise to chronized to the unsynchronized state for decreasinghe solid
a maximum Af=Af,.[1-exp-b(B.~B;)], where we find param- lines are a guide to the eye.
eter values of Af,,,=0.679+0.020, b=0.140+0.020, andﬁz

=7.750+0.294 for this array. If the quantity inside the square root in E4.l) is nega-
tive then Ré\t.)=-1/(28.). This is the value seen in
the expressions fok andL into Eq. (39) results in Fig. 9@ for B> B.=1.56. ForB.< . andm=1, the quan-
tity inside the square root is positive and (Remintc)
Re(\pte) =(-1/2Bc)[1-1-2Bcawl?2], where we have used the fact
that the quantity inside the braces in E41) is essentially
__ 1 14R \/1 5 1+ 2/35 5 unity for ig=5 and B.>1. Physically, the crossover-type
28 e Bee (i282+1)2 @m |- behavior evident in Fig. @) is due to the low-frequency

(long-wavelength m=1, normal mode of the ladder
changing from underdamped to overdamped in character
We are most interested in the Floquet exponent of minimunas g3, is decreased througﬁc:1/(2awf):l.56 for N=10
magnitude, R&\mit.), which essentially gives the lifetime of and a=1. Note from Fig. 9a) that the numerical results
the longest-lived perturbations to the synchronized ggde  for the exponents based on the RCSJ model, with 5%
Fig. 9). disorder, agree quite well with E¢41). Not surprisingly,

(41)

016215-9



TREES, SARANATHAN, AND STROUD PHYSICAL REVIEW E1, 016215(2005

(a) IV. “SMALL-WORLD” CONNECTIONS
0.35 IN LADDER ARRAYS

Many properties of small-world networks have been stud-
ied in the last several years, including not only the effects of
network topology but also the dynamics of the node elements
comprising the networ8,34]. Of particular interest has
been the ability of oscillators to synchronize when config-
ured in a small-world manner. Such synchronization studies
can be broadly sorted into several categori@s.Work on
coupled lattice maps has demonstrated that synchronization
is made easier by the presence of random, long-range con-
0.05 : : : : nections[11,16. (2) Much attention has been given to the

9 1 S T 4 8 synchronization of continuous time dynamical systems, in-

¢ cluding the first-order locally coupled Kuramoto model, in
®) the presence of small-world connectioi®13,14. For ex-
056 ample, Hong and co-workeld3,14 have shown that the
LKM, which does not exhibit a true dynamical phase transi-
tion in the thermodynamic limi¢fN— o) in the pristine case,
does exhibit such a phase synchronization transition for even
a small number of shortcuts. But the asser{inf] that any
small-world network can synchronize for a given coupling
strength and large enough number of nodes, even when the
pristine network would not synchronize under the same con-
ditions, is not fully accepte@35]. (3) More general studies
of synchronization in small-world and scale-free networks
o0 . i ] i [12,17 have shown that the small-world topology does not
° 1 2 3 4 5 guarantee that a network can synchronize. In Ried] it was
shown that one could calculate the average number of short-

FIG. 9. (Color onling Real part of the minimum-magnitude cuts per nodesg, required for a given dynamical system to
Floquet exponent for an array wit=10 andig=5. (a) Depen-  synchronize. This study found no clear relation between this
dence of exponents of for fixed coupling strengthe=1. Sym-  synchronization threshold and the onset of the small-world
bols are results of a numerical calculation based on the RCSJ modgggion, i.e., the value of such that the average path length
with either no disordefopen squargsor nonrandom critical cur-  petween all pairs of nodes in the array is less than some
rents andA=0.05(solid circleg. The solid line is an analytic result threshold value. Referen¢&7] studied arrays with a power-
[Eqg. (39)] from the LKM2. (b) Dependence of exponents on cou- |aw distribution of node connectivitiescale-free networks
pling strengtha for fixed B.=1. and found that a broader distribution of connectivities makes

a networklesssynchronizable even though the average path
the RCSJ model with no critical current disorder agreedength is smaller. It was argued that this behavior was caused
very well with the analytic result since the disorder wasby an increased number of connections on the hubs of the
ignored in order to obtain Eq41). Figure 9b) shows how scale-free network. Clearly it is dangerous to assume that
the minimum-magnitude Floquet exponent varies withmerely reducing the average path length between nodes of an

coupling strengthx for fixed B.. Now there is a crossover array will make such an array easier to synchronize.
at a:gzl/(zlgcwi):l_% for B.=1. For a>a, Eq. (41) How do Josephson junction arrays fit into the above dis-

gives Reé\,f)  cussion? Specifically, if we have a disordered array biased
=-1/(28,), independent ofv. For a<a, however, we see Such that some subset of the junctions are in the voltage
that asa— a, from above, the stability of the synchro- state, i.e., undergoing limit cycle oscillations, will the addi-

nized state decreases. In fact, one can show from(44. tion of random, long-range connections between junctions
that ’ for aid the array in attaining frequency and/or phase synchroni-

zation? Our goal in this section of the paper is to address this
question by using the mapping discussed in Secs. Il and Il
between the RCSJ model for thaderdampedadder array

and the second-order, locally coupled Kuramoto model.

0.30

0.25 -

0.20

-Re(? minte)

0.15 A

0.10 A

0.5 A

04 A

min tc)

0.3 A

-Re(2

0.2 A

0.1 A

a>a, and ﬁcaw§< 1, the stability decreases linearly with
a according to

9 Based on the results of R¢R26], we also know that the RSJ
Re\inte) = - ﬂ, a—al, model for anoverdampedadder can be mapped onto a first-
2 order, locally coupled Kuramoto model. Because of this

mapping, the ladder array falls into categ@®) of the pre-

vious paragraph. In other words, we should expect the exis-
independent of8.. Such linear behavior is evident in Fig. tence of shortcuts to drastically improve the ability of ladder
9(b) for small a. arrays to synchronize.
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FIG. 11. Scaled average path lengtiN (solid circles and left
) o i vertical axi3 and cluster coefficien€ (hollow circles and right
FIG. 10. A ladder array with periodic boundary conditiohs, \ertical axig, plotted versus the produgiN, wherep is the prob-
=8 plaquettes, and one long-range connection. Rung junciions apjjity of making a shortcut connection between pairs of nodes and
=1 andj=4 are shown as connected by a pair of off-rung junctions,y is ‘the total number of nodes in the network. This graph corre-
which have phase differences @f.; 4 and ¢, , The additional  g,,n4s taN=50. The solid line isC=2/N, which is the expected
off-rung junctions are uniform and identical to the off-rung junc- .| ster coefficient for a random network of sire=50 in which
tions in the pristine_ Iad_der. Uniform dc bias currents are appliedaach node has two neighbors in the pristine limit. Note @a0
along the rungs as in Fig. 1. aspN— 0, since each node’s neighbors are not connected to each
other in that limit. Also note tha€— 1 asp— 1, which is the limit
We add connections between pairs of rung junctions thagf a fully connected, regular network in which each node’s neigh-
will result in interactions that are longer than nearest neighbors are all connected to one another.
bor in range. We do so by adding two, nondisordered, off-
rung junctions for each such connection. For example, Fignodes neighboring each node that are also neighbors them-
10 shows a connection between rung junctigrs and | selves. These quantities are plotted as a function of the prod-
=4. This is generated by the addition of the two off-runguct pN. For pN=1, the average path length is already sub-
junctions labeled); .1 4and #,.; 4 Where the last two indices stantially reduced from its value in the pristine limit=0. It
in each set of subscripts denote the two rung junctions conis this reduced average distance between pairs of nodes that
nected. The new off-rung junctions are assumed to be idens one of the hallmarks of a small-world network. Because
tical to the original off-rung junctions in the array, with criti- our ladder array, in the pristine limit, allows only nearest-
cal currentl., resistanceR,, and capacitance&€, for the  neighbor coupling, the cluster coefficient vanishepasO.
underdamped case. Physically, we should expect that the nemg a result, our ladder geometry does not conform to the
connection will provide a sinusoidal phase coupling betweermmost commonly accepted definition of a small world, in
rung junctionsj=1 andj=4 with a strength tuned by the which both reduced path lengtiisompared to the pristine
parametewr=1.,/(l), where(l,) is the arithmetic average of |imit) and high cluster coefficient&ompared to that of a
the rung junction critical currents. We assign long-range conrandom network coexist(see Fig. 2 in Ref[7]). Neverthe-
nections between pairs of rung junctions randomly with aless, in our simulations we routinely choose values for the
probability p distributed uniformly between zero and one, parameteip such thatpN places us in the region of reduced
and we do not allow multiple connections between the sameath lengths. So we are considering ladder arrays in which
pair of junctions. For the pristine ladder, with=0, each the average distance between rung junctions is reduced by
rung has only nearest-neighbor connections, whpitel cor-  shortcuts by a factor of 5-10.
responds to a regular network of globally coupled rung junc- Next, we argue that the RCSJ equations for the under-
tions, i.e., each rung junction is coupled to every other runglamped junctions in the ladder array can be mapped onto a
junction in the ladder. straightforward variation of Eq33), in which the sinusoidal
In Fig. 11 we plot the two standard quantities used tocoupling term for rung junctiony also includes the longer-
characterize the topology of the network: the average pathange couplings due to the added shortcuts. Imagine a ladder
lengthl and the cluster coefficier@, calculated numerically ~with a shortcut between junctiorjsand |, wherel #j,j+1.
for a network withN=50 nodes(i.e., rung junctionsThe  Conservation of charge applied to the two superconducting
average path length is defined as the minimum distance islands that comprise rung junctignwill lead to equations
between each pair of nodes averaged over all such pairsery similar to Eq.(9). For example, the analog to E(Ra)
while the cluster coefficienC is the average fraction of will be
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+$ asm%;j,m + B.a 12 =0, (42 a4 N \j T ,l: \l iy
with an analogous equation corresponding to the inner super- 3
conducting island that can be generalized from @f). The
sum over the indek accounts for all junctions connected to
junction j via an added shortcut. Fluxoid quantization still 2
holds, which means that we can augment @d) with
1 -
Y+ o = N~ ¢ = 0. (43)
We also assume the analog of E#3) holds: 0+ <SS AR PAS
o = = - (44) 0 5 10 15 20 25
Equations(43) and (44) allow us to write the analog to Eq. .
(14) for the case of shortcut junctions:
(b)
Yi— Y
b= (45)
6 -
Equation(42), in light of Eq. (45), can be written as Ak t YR
etonEz, nfonorEs 14 A HIARAEEARARAR AT AR
- YT Nt hing N
amig s -iag - iy e 5 sl 257 AR
ot AV UGNV
dy| @ d?y;
+ sin Vz( ) + —V2<—i>
“E ( 2 ) dr) " 2" \d? 3 4
ax (dy, d%) a (dzv- dz%)
+=> | H-==]+=> | -—5]=0, (46 2 1
22(017 dr 22 d”?  d7? (46
where the sumg, are over all rung junctions connectedjto 14
via an added shortcut. As we did with the pristine ladder, we
will drop the two discrete Laplacians, since they have a very 0 OV GOV U VS0 NN
small time average compared to the termgdy;/dr . . . .
+igjB.d%y;/d7*. The same is also true, however, of the terms 0 5 10 15 20 25
al23,(dyj/dr=dy/d7) and a/23(d?*y,/d?~d?y/d7?), as
direct numerical solution of the full RCSJ equations in the T

presence of shortcuts demonstratese Fig. 12 So we shall

FIG. 12. Time dependence of several combinations of voltages
drop these terms as well. Then E¢6) becomes P g

or voltage derivatives for a ladder witi=10, ig=5, and nonran-
dom critical currents withA=0.05. The array was chosen to have

( KV ) three shortcuts between the following pairs of rung junctiéhs),
(2,7, (4,6). In both plots the following quantities are compared

(47) (note that v1:d71IQ7-): iciv1tic1Bcdvi/dr (dot-dashed ling

(a/2)(v1—v3) (solid line), and («/2)B.(dv,/dr—dvs/d7) (dashed

where the sum is over all junctions i, which is the set of line). The time-average value of the latter two quantities is negli-

all junctions connected to junction Based on our work in gible. (a) =1, 3.,=10.(b) a=1, B;=1

Sec. Il, we can predict that a multiple-time-scale analysis of

Eq. (47) results in a phase model of the form

ig—ijsiny - IBCCJEzl"’_E sin

dy;
IC
J

dr keA

de s _(h-d

99 _ v &

'Bcdjz d_¢1 Q+22 Sm(¢k2¢>, (48) dr_Qi +2k§\,— sm( 5 ) (49)
keA

where (; is give by Eq.(26). A similar analysis for the where the time-averaged voltage across each overdamped
overdampedadder leads to the result rung junction in the uncoupled limit is
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(50)

Figure 13 demonstrates that the frequency synchroniza-
tion order parametef, calculated from Eq(49) for over-
damped arrays withl=30 andN=50 and in the presence of
shortcuts, agrees well with the results of the RSJ model. In
addition to the pristine array with=0, we considered arrays
with p=0.05 and 0.10 in which we averaged over ten real-
izations of shortcuts. The agreement between the two models
is excellent, as seen in the figure. It is also clear from the
figure that shortcuts do indeed help frequency synchroniza-
tion in that a smaller coupling strengghis required to reach
f=1 in the presence of shortcuts. In fact, the valueapf
required to reactf=1 is growing with increasingN in the
cases ofp=0; for example, we find thex,=3.36 for N
=100 (compare with Fig. 1B The same is clearly not true,

0.8

0.6

0.4

0.2
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p =0.10, LKM

[ ]
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A p=005LKM
A
| |
O  p=0.10,RSJ

however, for arrays witlp=0.05 and 0.1. Recently, Hong,
Choi, and Kim[13] have demonstrated, using a finite-size
scaling analysis applied to the LKM, that the phase synchro-
nization order parametdir|), in the presence of shortcuts
(0<p<1) has a mean-field synchronization phase transition
as in the GKM(i.e., the LKM with p=1). Based on the
agreement between the two models shown in Fig. 13, we
expect such an analysis to apply to the RSJ equations for the
ladder as well. The finite-size scaling behavior of fre
quencysynchronization of the LKM has not been studied, so
the nature of that transition is not well known. Figure 14
demonstrates thatinderdampedladders also synchronize
more easily with shortcuts and that E48) agrees well with

the RCSJ model.

Although the addition of shortcuts makes it easier for the
array to synchronize, we should also consider the effects of
such random connections on the stability of the synchronized
state. The Floguet exponents for the synchronized state allow F|G. 13. (Color online Frequency synchronization order param-
us to quantify this stability. Using a general technique dis-eter f, plotted versus coupling strength for overdampedarrays
cussed in Ref[36], we can calculate the Floquet exponentswith bias currentig=5 and nonrandom critical currents with
A\, for the LKM based on the expression =0.05. Solid symbols represent numerical results based on the
LKM model, Eq. (49), while hollow symbols are from the RSJ
model. The data for nonzeno represent an average over ten real-
izations of randomly assigned shortcu@®. N=30, (b) N=50. Note
that shortcuts improve the frequency synchronization behavior in
that the critical coupling needed fé=1 is clearly reduced ag is
increased from zero. In faei; is clearly growing with increasindy
in the case ofp=0, while the same is not true of the array with
shortcuts.

S

20

a

Al = aES, (51)
where Eﬁ are the eigenvalues @, the matrix of coupling
coefficients for the array. A specific eleme@ of this ma-
trix is unity if there is a connection between rung junctions
and j. The diagonal ternG;; is merely the negative of the
number of junctions connected to junctionThis gives the
matrix the property2;G;;=0. In the case of the pristine lad-
der, the eigenvalues of can be calculated analytically,
which yields Floquet exponents of the form

depend on the coupling strength, we expect the exponents to
grow linearly with @, based on Eq(52). To include the ef-
fects of shortcuts, we found the eigenvalt@numerically

for a particular realization of shortcut®r a given value of

p), and then we averaged over 100 realizations of shortcuts
for each value op. The exponents of minimum magnitude
for the overdamped array witp=0.01,0.05,0.10 are also
This result is plotted in Fig. 15 as the solid line for an over-shown in Fig. 15(note the logarithmic scale on both axes
damped array witiN=100; note that the solid line is the Clearly, shortcuts greatly improve the stability of the syn-
p=0 Floquet exponent of minimum, nonzero magnitude.chronized state. Specificalhfnﬁ’;o'])/)\ﬁﬁ;o):1030, a three or-
Since theEnG1 are purely geometry dependent, i.e., do notder of magnitude enhancement.

- m
AP0t =~ da sinz(f) : (52)
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was shown in Ref[38] thatunderdampedrrays in an exter-
nal magnetic field perpendicular to the plane of the array
could lift this degeneracy via the coupling of the junctions to
the external magnetic field in the gauge-invariant phase dif-
ference. In the presence of critical current disorder, however,
numerical simulations of the RSJ equations revealed that fre-
guency synchronization was no longer possible. In fact, each
column or ladder in the array would individually synchronize
but sufficient “interladder” coupling was not present to en-
train the entire set of horizontal junctiof39,40. This be-
havior is shown in Fig. 17 by means of a so-called cluster
diagram.

To include shortcut connections in the 2D array, we
followed a procedure similar to that described in the pre-
vious section. For clarity, let each horizontal junction in
the array be described by a pair of coordinatgs wherei
denotes the row angl the column in which the junction is
positioned. To establish a connection between two particular
horizontal junctions, say junctionisj andk,l, that are not
already nearest neighbors, we add two new junctions, one
connecting the left superconducting island of junctign
to the left island of junctiork,l and the second junction
between the islands on the right sidesigf and k,l. We
also allow the shortcut junctions to be critical current dis-
ordered. Contrary to the case of individual ladder arrays,
the effects of shortcuts on synchronization in 2D arrays is
not so easily characterized. Figure 18 shows the scaled
standard deviation of the time-averaged voltag¢a)/s,(0)
for the ten horizontal junctions of an overdamped array with
M=2 andN=5 and for p=0.25. Note that the ratio does
not approach unity for nonzerp as «a— 0 because of the
presence of the disordered shortcut junctions. For reference,
s,(a)/s,(0) for the pristine array is also showfsolid
circles. In this case, entrainment is frustrated in that the

FIG. 14. (Color onlin@ Frequency synchronization order ratio settles into a clearly nonzero value as the coupling

parametef, plotted versus coupling strengthfor anunderdamped

strength is increased. The hollow circles and squares in Fig.

ladder array withN=30, bias currentiz=5, and nonrandom 18 are the values & (a)/s,(0) for two different realizations
critical currents withA=0.05. Solid symbols represent numerical of shortcuts atp=0.25. For case 2 in the figurghollow

results based on the LKM2 model, E&8), while hollow symbols
are from the RCSJ model. The data for nonzeroepresent an

squarey the shortcuts have only slightly improved the level
of synchronization compared to the pristine case, as

average over ten realizations of randomly assigned short@ts. s,(a)/s,(0) is only reduced by a factor of about 0.35 com-

B.=1, (b) B.=30. Agreement between the two models is excellent,
except for large3. andp=0 neara,, which is not unexpected based

on Fig. 2.

V. “SMALL-WORLD” CONNECTIONS
IN TWO-DIMENSIONAL ARRAYS

pared to itsp=0 value. Case Thollow circles is more in-
teresting in thats,(«)/s,(0) is reduced, on average, by an
order of magnitude compared to the pristine case by the par-
ticular realization of shortcut junctions presefilote the
logarithmic scale on the vertical axis and the topmost arrow
on the right axis, which denotes the average value of
s,(a)/s,(0) for 4<a<10.] The noise evident in the results

In this section we present some preliminary results orfor case 1 is probably a finite-size effect, but studies of larger
synchronization in disordered two-dimensional arrays in thearrays are necessary to be sure.
presence of shortcuts. Geometrically, we can think of a pris- Although array synchronization has clearly not occurred

tine 2D array as a set &l columns, or “ladders,” each with

in the second realization of shortcuts in Fig. 18, the reduced

N plaquettes, grafted togethésee Fig. 16, which depicts value ofs,(@)/s,(0) for case 1 does not automatically imply
M=2,N=5). It is well known that in such a geometry, phase entrainment has occurred in that case. Included in Fig. 18 are
locking of all the horizontal junctions can occur in a hori- the values ofs,(«)/s,(0) for the junctions in each column

zontally biased uniform arragi.e., no critical current disor-

separately(hollow triangle$. The low average value of these

den but that a high degree of neutral stability is exhibited quantities(see the two lower arrows along the right axis

[37]. More precisely, in an array witM columns, there will
be a zero-valued Floquet exponent with multiplichy. It

shows that the junctions in a given column are much more
strongly entrained to each other than to junctions in the
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100

p=0.10 results, we thus conclude that shortcuts in 2D arrays, biased
0] p=005 in the standard way shown in Fig. 16, do not significantly
p=001 enhance the array’s ability to synchronize. We see similar

effects forp=0.5.

We have also considered the effectsuoiform shortcuts
in the 2D array, where each additional shortcut junction is
identical to the uniform vertical junctions in the pristine ar-
ray. As in the case of disordered shortcuts, when we consider
ten different realizations ap=0.25 we find that in some
osvor + ) - casegqroughly 40% of the re_alizati0m$he. array Weakly fre-

quency synchronizes and in the remaining cases it clearly
does not. Results representative of these two outcomes are

FIG. 15. Floguet exponent of minimum magnitukg,, plotted ~ Shown in Fig. 20. They show an interesting distinction be-
versus coupling strength for the LKM with N=100. Exponents tween this case and the case of disordered shortcuts dis-
are calculated based on a technique described in[R6f. For p cussed previously: for sufficiently large couplingall aver-
=0, the exponents can be calculated analytically, with the resulfge voltages across the horizontal junctions now go to zero.
Re(\minte) =—4a sir?(wr/N). For each nonzerp, the results are av- This behavior is due to the fact that1./(l.) is the ratio of
eraged over 100 realizations of shortcuts. Note the logarithmic scalthe critical current of the vertical junctionsow including
on both axes. shortcut junctionsto the average critical current of the hori-

_ ) ) o zontal junctions. As this ratio increases, for a given number
neighboring column. Thus, the hollow circles in Fig. 18 cor-and configuration of shortcuts, a value efis eventually
respond, at best, tweakintercolumn synchronization. Fig- reached for which all the bias current is able to traverse the
ures 19a) and 19b) are cluster diagrams for cases 1 and 2,circuit without exceeding any particular junction’s critical
respectively, in which the vertical axes of the two plots havecyrrent. In other words, the array is biased below its effective

the same scale. Simple visual inspection of the plots suggegtitical current in the presence of shortcuts and thus there is
that the array is weakly frequency synchronized in case 1 fog zero average voltage across the array.

a=2 but not in case 2. In fact, we have considered ten

p=0

-Re( A min tc)

0.001 1

o

different realizations of shortcuts @=0.25 and find this 51 L
weak synchronization behavior only for one realizatipe., o
case 1. The nine remaining realizations resulted in an array mg
that was clearly not entrained, as in case 2. Based on these 50 :sMAAE‘
) o T8,
1,1 1,2 Pap b 1 Y
I 2@ SSssassssseseRsseeS
49 { 6@ 4a v ¥
. 9 aa vV VY
A.—
> o ;vv v
v 90000000 L g
Iy 8 ] vv o coggmm
)
309
D
2099 o 11 o 12
47 $Ou" v 21 @ 22
Ip ¥ 031 @ 32
O Al o 42
A 51 4 52
46 T T T
0.0 0.1 0.2 0.3
Ip +y
L. ;
+e FIG. 17. A cluster diagram of the time-averaged voltages .
across the horizontal junctions, plotted versus coupling streagth
Ig for an array withM =2 columns andN=5 plaquettes per column. A
bias currenig=5 is applied and extracted along each row, and the
horizontal junctions are assigned critical currents randomly accord-
ing to Eqg.(11) with A=0.05. We assume periodic boundary condi-
Ip L1 L2 tions in the vertical direction. The array is pristie=0). The sym-

bols with dots correspond to voltages across the junctions in column
FIG. 16. A two-dimensional array of junctions witfl=2 col- 2. The diagram demonstrates that the two columns are each fre-
umns, or “ladders,” each witN=5 plaquettes. A dc bias curreiy quency synchronized but that the synchronized voltages for each
is injected along the left side and extracted along the ride side of theolumn are different. The numbers in the legend denote the coordi-
array. We assume periodic boundary conditions inytd@ection. A nates of each horizontal junction. For example, the coordinates 1, 2
junction with a label such as 1, 2 means the junction is in row 1 andlenote the horizontal junction in the first rofgtarting from the
column 2. bottom row and second colum(starting from the left column
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FIG. 18.(Color onling Scaled standard deviatigy«)/s,(0) of o " 3
time-averaged voltages across the horizontal junctions, plotted ver- E if
sus coupling strengtl for an array withM =2 columns andN=5 <A> 42
. .. . 51
plaquettes per column. The bias currenigis 5, and the horizontal (b) A s2
junctions are assigned critical currents randomly according to Eq. 50
(11) with A=0.05. We assume periodic boundary conditions in the 45
vertical direction. The solid circles are for the pristine arnay0. ’
The hollow circles and squares represent two different realizations 40 o

of shortcuts atp=0.25 in which the added shortcut junctions are
critical current disordered. The hollow ygown) triangles denote
the value ofs,(a)/s,(0) for only the junctions in column ongwo).

The arrows pointing to the right axis denote the average values of
s,(a)/s,(0) over the interval & « <10 for the hollow circles and 25
both the up and down triangles.

35

3.0

<Vij>‘l7

290

15

The limiting case ofp=1 means that each horizontal

junction is connected to all the remaining horizontal junc- 10 + : : '
tions. For this case and with uniform shortcut junctions, we 0 1 2 3 4
find that the array behaves similarly to Fig.(a0 there is a o

range of coupling strengths for which there is weak en-
trainment, but for largex the array is in the zero-voltage  FIG. 19. Cluster diagrams for the time-averaged voltaggs,
state(see Fig. 21 across the horizontal junctions, plotted versus coupling strength
« for an array withM =2 columns andN=5 plaquettes per column.
The bias current isg=5, applied and extracted along each row,
VI. CONCLUSIONS and the horizontal junctions are assigned critical currents ran-
domly according to Eq(11) with A=0.05. We assume periodic
In this paper we have obtained two main sets of resultsboundary _conditions in the ve_rtical di_rectic_m. The_ Iegt_and provides
First, using a multiple-time-scale method, we have mapped'® coordinates for each horizontal junction as in Fig. &.p
the exact RCSJ equations for an underdamped ladder Witﬁo'?S’ .flrst shortcut realization(b) p=0.25, second shortcut
periodic boundary conditions to a second-order, locally'€alization.
coupled Kuramoto model. Second, we have studied the ef-
fects of small-world connections on the ability of both ladder We have also shown that small-world connections en-
and 2D arrays to synchronize. The mapping to the LKM2 ishance a ladder array’s ability to synchronize. This result is
itself useful for two main reasons. First, the synchronizatiomot surprising in light of our mapping to the LKM and earlier
behavior of the Kuramoto model and its variations has beestudies in which the LKM was found to exhibit a mean-field-
well studied in its own right and could thus shed some lightlike phase synchronization transition in the presence of
on behavior of actual JJ arrays. Second, the LKM2 is solvedhortcuts[13]. But we find that SW connections only mar-
more quickly on the computer and is easier to understandinally increase the ability of a 2D array to synchronize.
intuitively than the RCSJ equations. Future work in this areeSpecifically, for several representative 2D small-world net-
could include using the results of this mapping for the un-works, we found only some small fraction of these networks
derdamped laddefas well as the first-order LKM for the had slightly improved frequency synchronization of the hori-
overdamped laddgrto arrive at a phase model for the 2D zontal junctions. In the pristine 2D arrgp=0) it is well
array, as has been suggested in R&f]. Such a phase model known that no such synchronization, weak or otherwise, is
for 2D arrays may shed light on why it is difficult for 2D observed over the entire array—hence our characterization
arrays to synchronize. that shortcuts are only marginally effective at producing a
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o FIG. 21. Cluster diagram for the time-averaged voltages,
b across the horizontal junctions, plotted versus coupling streagth
®) for an array withM =2 andN=5. The bias current igg=5, and the
horizontal junctions are assigned critical currents randomly accord-
5 ing to Eqg.(11) with A=0.05. We assume periodic boundary condi-
v tions in the vertical direction. All shortcut junctions are identical to
4 gg the uniform vertical junctions in the pristine array, i.e., the shortcut
Uu junctions are not disordered. The legend provides the coordinates
A" 5 2 o for each horizontal junction as in Fig. 17. Shortcut junctions are
= 8. added according tp=1.
v 8°n
2 J N .
8§5 ment synchronization in individual ladders but not in 2D
v-”% arrays. If one can produce a mapping, even approximate, of
14 v Qc .
sg.éa the RCSJ equations for the 2D array to a phase model of the
95" Winfree type, this could be very helpful in understanding the
0 " - " rich and perplexing dynamical behavior of 2D arrays.
0 1 2 3 4 5 6
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APPENDIX: MULTIPLE TIME SCALE ANALYSIS

We substitute Eq(22) into Eq.(18). To help organize the
terms according to the order & we also write the nonlinear
terms as followgas in Ref.[24]):

p=0.25, second shortcut realization. There is no evidence of en- %

trainment up toa=4.4, beyond which the array is in the zero- sin Y = 2 e”Su-, (Ala)
voltage state. n=0

synchronized array. This conclusion holds whether the addi- o *

tional shortcut junctions are disordered or uniform. Future sin(M> => €"Ryj+sr (Alb)
work in this area could include looking at a broader range of 2 n=0 '

p values as well as looking at larger 2D arrays. It is tempting, . _ _

but an oversimplification, to think of 2D arrays as mere as—WTere =Sy, _Sl_'i_ylvi COSYoj: )= 72j O3 Y0;
semblages of ladder arrays. One source of this temptation 5274 SiNY0)  Rojus=SiM(Y0j45=%0,)/2],  Ryjrs=3 COS

1
the intriguing fact that the pristine 2D array of disordered <[(¥oj+s~ 70,])/2](71,j+f_ vy and Rpjis=35 C03(ypj+s
junctions will form synchronized clusters consisting of indi- = ¥0,)/2](v2,+5= ¥2j) =5 SN (Yo +5~ Y0,/ 2(¥1 45~ Y1))*
vidual ladders. Another is our result that shortcuts can augSo Eq.(18) can then be written as
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oo

1= icj:écE €T+ 2€dp01 + (2000, + ) + 2€¥(do0
n=0

[

+ 319 I +iej 2 €do+ €1+ €9y + €3] Y
n=0

oo

+ei €S~ ead D €Ry s

(A2)
n=0 n=0 5=+1
Extracting all terms oD(€°) yields
1=i¢iBedovo; +icidoYo,- (A3)

The solution to the homogeneous version of E3) is

¥0;=A+Be A where A and B are constantswith re-
spect to the { time scale The exponential term is

dropped because it represents transient behavior. We take a
partlcular solution to the mhomogeneous equation of the

form y§)=C{%T,, where C” is independent offy. Sub-

stitution of y(p) into Eq. (A3) yields C(O)_lllq So the so-
lution to Eq. (A3) can be written as

-
=+ ¢i(T1, T2, Ta), (A4)

cj

Yo,

where one can think of; as describing the slow phase dy-
namics of ;.

Setting the coefficients of th@(e') terms in Eq.(A2) to
zero gives

_
0=Bddoy1j+ 20001701+ [doy1j + d170]

= Rojion (A5)

icjo=t1

+ S),j

where we have divided by a factor @f. This result is writ-
ten as

E ROJ+5

CJ 5=+1

Bedov1j == 2BedodrYo; = 1Yo~

(A6)

Based on Eq(A4) we can calculate the derivatives on the

right side of Eq.(A6). We find

Gotvo; = — a{T ¢(TTT)} (’M) 0
091%0,j = aTO&Tl il 2, 13 T\ aT, )
becausep; is independent oT,. Also
To _ 0 _
d1Y0)= T, [ +¢>,} o, = o1y

Next we look at the nonlinear terms on the right side of

Eq. (A6):

i)
S, =sin( — + ¢/,

icj

PHYSICAL REVIEW E1, 016215(2005

Roj+s= Sin|: (Tolicj - TO/ic,j+25) + (¢i+5_ ¢J):|
~ S|n|:ﬁ+52;¢l:| ,

where in the limit of small disorder we have assumed
To(1/igj—1/i¢j+5)=0. So Eq.(A6) can be written as

~ T,
Bcdoyr+ doyrj=— b~ 5'”( + ¢J> +M;, (A7)

whereM;=(alig)Z s Sin (o). s~ ¢;)/2] is a constant with re-
spect toT,. Temporarily ignoring the derivative, ¢; on the
right side of Eq(A7) and using the trigonometric identity for
the sine of a sum of two quantities, we find a particular
solution to Eq.(A7) of the form

To T
| =M;To+C" sm( ) +D{Y co{i—o), (A8)
Iej ¢j

where

.2 ~ . .
i%:(B. cos; — i Sin ¢

CM(Ty, Ty = oo .2¢’~2°’ . (a9

ch+:8c

.2 ~ . .
i(B.sing: +i. cosd:

D{Y(Ty, Tp) = clPeSN 1 CO96) (a1

igj + :8(:2
The termM;T, in Eq. (A8) represents a secular term that

grows without bound a3,— <. To remove this term from
the solution we impose the condition

— o1+ M;=0,
which gives
Ib: =
d_oas sin[M]. (A11)
Ty dgjems1 2

This in turn gives a solution foy, ; that is Eq.(A8) without
the secular term. Note that E¢A11) measures the rate of
change of¢;, and hencey,;, with respect to the slow time
scaleT;.

Next, we look at all terms in EqA2) that areO(e?):

57 =~ 2
Bcf%Yz] +doYaj =~ 2Bt V1~ Bc(2d0d2 + 37) Yo — 111

2 le+5

Icj o=21

— Yo~ (A12)

Using the known results fory,; and y,; to calculate the
derivatives on the right side of EqA12), and using the
expression forS; ; and T, j,5 means that Eq(A12) can be

written (after some algebjaas
% 2 To To
BC 072, + (90’)/2’]‘ ﬁz(ﬁl + V + W sin + X] co |_
Igj cj

2T, 2T,
+Yjsin +Z;co§ — |, (A13)
icj icj

where
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28
Wy =="5C[01¢; + D aug,
cj
+ LS (oo - C(l))co{ﬁﬂl}
2 C] o=+1 J+5 J 2 '
28
1= D} g+ Clng

cj

+=—> (D;- D}”)COS{M]
2i c1 o=t1 2

X

1 .
Y= - E[C}” cos¢; — D sin ¢y],

1
Z=- E[Cj(l) sin ¢; + DI cos ],

where C}l) andDY are given by Eqgs(A9) and (A10). As
with the first-order case, we want a solution to E§13) that

does not have any secular terms. Therefore we must impose

the condition

_ 2
(9_(151 - V]- = B a_(ﬁl _J_ (A14)
dT, JTs 2(i5+ ,BCZ)

Based on Eq(All) it is possible to calculate®e;/JT?,
which appears on the right side of E@\14). We find

P J )
_4;’11: 22 sin [_J_‘ﬁi]
aTy ICJ IT1 521 2

2

=a.—l2 sin(¢ = dje) + E sm<—12—¢1)

2% =21 2512
- sir? += >, sinl
( 2 ) 221 ( 2 )]
2
o
=—2Z, Al15
2i% ™" (A15)
where we approximated lifjicj:1) with 1/| Note that

Vg, = }j+1=2¢;+¢j-1. Substituting Eq. (A15) into Eq.
(A14) yields
o i3 27
ol Chey (A16)
(9T2 2('5] + ﬂcz) 2|Cj
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Our next step is to calculate the derivatide,;/dr with
respect to the original dimensionless time variabtér/ig.
We find

d dyo
EHTE =ig =igldo+ €d; + 6232][ + ¢](T1’T2):|
dr Cﬁ' icj

- B+£2 Sin|:¢'+52_¢':|

Icj 'cj 5=+1

i /i a
- -2CJ -Ezs 2\ -fczi'
2(|cj + IBBC) 2|cj
where use was made of the expressiasl/ig and EC
=igB.. It is convenient to define the quantity
_ (igfin)” ]

[
Q] = _B|:1 > o |
'cj 2{,8c+ ('cj/|B) }
Physically, one can think of); as the angular frequency

(average voltageof oscillator (junction) j in the absence of
coupling. Then Eq(A17) can be written as

(A17)

(A18)

2
o, =0+ sm[ bivs~ d)‘} - a,'fczj.
dT IC]5—+1 2 215

¢l

It is also useful to calculate the second derivativeygf:

dz‘}’o,' - i2d270,'
d”? B d?
= (5[5 + 2€d00, + €4(2d901 + )b
2
o
= FZJ-, (A19)

cJ

where we made use of EAL5). It is common practice at
this juncture to replace the symbegy; in Eq. (A17) with ¢;,
which we shall also do in EqA19).

Finally, motivated by the structure of E¢L6), consider
the combination of terms

d2¢ ¢
C]BC d1'2 Cj dr

Substituting for the derivatives from E@gA17) and (A19)
and dividing through by a factor af; results in the expres-
sion

d_¢1

=0+ — E sm{—lz—d)i], (A20)

3 &,
“d? icj ozt

which is Eq.(33) in Sec. Il B. A straightforward but tedious

continuation of the analysis ©(€%) then leads to E¢25) in

Sec. Il B.
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